Page 131 - Physico-Chemical Niche Conditions for Bone Cells
P. 131
REFERENCES
1. Tatsumi, S.; Ishii, K.; Amizuka, N.; Li, M.; Kobayashi, T.; Kohno, K.; Ito, M.; Takeshita, S.; Ikeda, K. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007, 5, 464–475, doi:10.1016/j.cmet.2007.05.001.
2. Duncan, R.L.; Turner, C.H. Mechanotransduction and the functional response of bone to mechanical strain. Calcif. Tissue Int. 1995, 57, 344–358, doi:10.1007/BF00302070.
3. Vyas, S.; Zaganjor, E.; Haigis, M.C. Mitochondria and cancer. Cell 2016, 166, 555–566, doi:10.1016/j.cell.2016.07.002.
4. Schmiedel, J.; Jackson, S.; Schäfer, J.; Reichmann, H. Mitochondrial cytopathies. J. Neurol. 2003, 250, 267–277, doi:10.1007/s00415-003-0978-3.
5. Wallace, D.C. Mitochondrial diseases in man and mouse. Science. 1999, 283, 1482– 1488, doi:10.1126/science.283.5407.1482.
6. Kang, E.; Wu, J.; Gutierrez, N.M.; Koski, A.; Tippner-Hedges, R.; Agaronyan, K.; Platero-Luengo, A.; Martinez-Redondo, P.; Ma, H.; Lee, Y.; et al. Mitochondrial replacement in human oocytes carrying pathogenic mitochondrial DNA mutations. Nature 2016, 540, 270–275, doi:10.1038/nature20592.
7. McManus, M.J.; Picard, M.; Chen, H.-W.; De Haas, H.J.; Potluri, P.; Leipzig, J.; Towheed, A.; Angelin, A.; Sengupta, P.; Morrow, R.M.; et al. Mitochondrial DNA variation dictates expressivity and progression of nuclear DNA mutations causing cardiomyopathy. Cell Metab. 2019, 29, 78-90.e5, doi:10.1016/j.cmet.2018.08.002.
8. El-Hattab, A.W.; Adesina, A.M.; Jones, J.; Scaglia, F. MELAS syndrome: Clinical manifestations, pathogenesis, and treatment options. Mol. Genet. Metab. 2015, 116, 4–12, doi:10.1016/j.ymgme.2015.06.004.
9. Duchen, M.R. Mitochondria in health and disease: perspectives on a new mitochondrial biology. Mol. Aspects Med. 2004, 25, 365–451, doi:10.1016/j.mam.2004.03.001.
10. Grünewald, A.; Kumar, K.R.; Sue, C.M. New insights into the complex role of
mitochondria in Parkinson’s disease. Prog. Neurobiol. 2019, 177, 73–93,
doi:10.1016/j.pneurobio.2018.09.003.
11. Oliver, D.M.A.; Reddy, P.H. Molecular basis of Alzheimer’s disease: Focus on
mitochondria. J. Alzheimer’s Dis. 2019, 72, S95–S116, doi:10.3233/JAD-190048.
12. Yamaguchi, J.; Nishiyama, S.; Shimanuki, M.; Ono, T.; Sato, A.; Nakada, K.; Hayashi, J.-I.; Yonekawa, H.; Shitara, H. Comprehensive application of an mtDsRed2-Tg mouse strain for mitochondrial imaging. Transgenic Res. 2012, 21, 439–447,
doi:10.1007/s11248-011-9539-1.
13. Wai, T.; Langer, T. Mitochondrial dynamics and metabolic regulation. Trends
Endocrinol. Metab. 2016, 27, 105–117, doi:10.1016/j.tem.2015.12.001.
14. Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463,
485–492, doi:10.1038/nature08908.
15. Bartolák-Suki, E.; Imsirovic, J.; Nishibori, Y.; Krishnan, R.; Suki, B. Regulation of
mitochondrial structure and dynamics by the cytoskeleton and mechanical factors. Int.
J. Mol. Sci. 2017, 18, 1812–1828, doi:10.3390/ijms18081812.
16. Gurel, P.S.; Hatch, A.L.; Higgs, H.N. Connecting the cytoskeleton to the endoplasmic
reticulum and Golgi. Curr. Biol. 2014, 24, R660–R672, doi:10.1016/j.cub.2014.05.033.
17. Giorgi, C.; De Stefani, D.; Bononi, A.; Rizzuto, R.; Pinton, P. Structural and functional link between the mitochondrial network and the endoplasmic reticulum. Int. J. Biochem.
Cell Biol. 2009, 41, 1817–1827, doi:10.1016/j.biocel.2009.04.010.
18. Pegoraro, A.F.; Janmey, P.; Weitz, D.A. Mechanical properties of the cytoskeleton and
cells. Cold Spring Harb.
Perspect. Biol. 2017, 9, a022038,
doi:10.1101/cshperspect.a022038.
19. Parandakh, A.; Tafazzoli-Shadpour, M.; Khani, M.-M. Stepwise morphological changes
and cytoskeletal reorganization of human mesenchymal stem cells treated by short- time cyclic uniaxial stretch. Vitr. Cell. Dev. Biol. - Anim. 2017, 53, 547–553, doi:10.1007/s11626-017-0131-8.
Chapter 5
129
5