Page 131 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 131
References
1. Keall PJ, Mageras GS, Balter JM et al. The management of respiratory motion in radiation oncology report of AAPM Task Group 76a). Med. Phys. 2006; 33(10):3874–3900.
2. Claude L, Malet C, Pommier P et al. Active Breathing Control for Hodgkin’s Disease in Childhood and Adolescence: Feasibility, Advantages, and Limits. Int. J. Radiat. Oncol. Biol. Phys. 2007; 67(5):1470–1475.
3. Demoor-Goldschmidt C, Chiavassa S, Josset S et al. Asservissement respiratoire lors d’une radiothérapie pulmonaire bilatérale pour le sarcome d’Ewing ou le néphroblastome chez des enfants et jeunes adultes : études dosimétrique et clinique de faisabilité. Cancer/Radiotherapie 2017; 21(2):124–129.
4. Filin A, Treisman S, Peles Bortz A. Radiation Therapy Preparation by a Multidisciplinary Team for Childhood Cancer Patients Aged 31⁄2 to 6 Years. J. Pediatr. Oncol. Nurs. 2009; 26(2):81–85.
5. Bucholtz JD. Comforting children during radiotherapy. Oncol. Nurs. Forum 1994; 21(6):987–94.
6. Tyc VL, Klosky JL, Kronenberg M et al. Children’s Distress in Anticipation of Radiation Therapy
Procedures. Child. Heal. Care 2002; 31(1):11–27.
7. Griem ML. Prescribing, Recording, and Reporting Photon Beam Therapy. Radiat. Res. 1994;
138(1):146.
8. Wolthaus JWH, Schneider C, Sonke JJ et al. Mid-ventilation CT scan construction from four-
dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients.
Int. J. Radiat. Oncol. Biol. Phys. 2006; 65(5):1560–1571.
9. Lens E, Van Der Horst A, Versteijne E et al. Dosimetric advantages of midventilation compared
with internal target volume for radiation therapy of pancreatic cancer. Int. J. Radiat. Oncol. Biol.
Phys. 2015; 92(3):675–682.
10. Wolthaus JWH, Sonke JJ, van Herk M et al. Comparison of Different Strategies to Use Four-
Dimensional Computed Tomography in Treatment Planning for Lung Cancer Patients. Int. J.
Radiat. Oncol. Biol. Phys. 2008; 70(4):1229–1238.
11. Britton KR, Starkschall G, Tucker SL et al. Assessment of Gross Tumor Volume Regression and
Motion Changes During Radiotherapy for Non–Small-Cell Lung Cancer as Measured by Four-
Dimensional Computed Tomography. Int. J. Radiat. Oncol. 2007; 68(4):1036–1046.
12. Ge J, Santanam L, Noel C, Parikh PJ. Planning 4-Dimensional Computed Tomography (4DCT) Cannot Adequately Represent Daily Intrafractional Motion of Abdominal Tumors. Int. J. Radiat.
Oncol. 2013; 85(4):999–1005.
13. Lens E, van der Horst A, Kroon PS et al. Differences in respiratory-induced pancreatic tumor
motion between 4D treatment planning CT and daily cone beam CT, measured using
intratumoral fiducials. Acta Oncol. (Madr). 2014; 53(9):1257–1264.
14. Huijskens SC, van Dijk IWEM, Visser J et al. Magnitude and variability of respiratory-induced
diaphragm motion in children during image-guided radiotherapy. Radiother. Oncol. 2017;
123(2):263–269.
15. Pai Panandiker AS, Sharma S, Naik MH et al. Novel assessment of renal motion in children as
measured via four-dimensional computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 2012;
82(5):1771–1776.
16. Kannan S, Teo BKK, Solberg T, Hill-Kayser C. Organ motion in pediatric high-risk neuroblastoma
patients using four-dimensional computed tomography. J. Appl. Clin. Med. Phys. 2017;
18(1):107–114.
17. Guerreiro F, Seravalli E, Janssens GO et al. Intra- and inter-fraction uncertainties during IGRT
for Wilms’ tumor. Acta Oncol. (Madr). 2018; 57(7):941–949.
18. Rankine L, Wan H, Parikh P et al. Cone-Beam Computed Tomography Internal Motion Tracking
Should Be Used to Validate 4-Dimensional Computed Tomography for Abdominal Radiation
Therapy Patients. Int. J. Radiat. Oncol. 2016; 95(2):818–826.
19. Gierga DP, Chen GTY, Kung JH et al. Quantification of respiration-induced abdominal tumor
128