Page 130 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 130
respiratory-induced diaphragm motion and age [14, 17]. The same holds for patients treated under GA; differences in amplitude of respiratory-induced diaphragm motion in patients treated with- or without GA were insignificant [14, 17, 32].
Outcomes reported in adult studies that investigated the predictive value of measurements done in the 4DCT are not consistent; some studies found that measurements in 4DCT did not accurately predict respiratory-induced motion as seen on daily/weekly CBCT images [11–13, 18], while others concluded that respiratory-induced motion as measured in 4DCT was representative for the daily motion during the treatment course [24, 34]. These differences mostly depended on the tumor location, considering that abdominally located tumors could also be affected by abdominal processes, while thoracically located tumors are situated closer to the mediastinum. Interestingly, in those adult studies where respiratory-induced motion measured in the 4DCT was not representative, measurements overestimated daily respiratory-induced motion [11, 13], while in our pediatric cohort, the 4DCT mostly underestimated the daily respiratory-induced diaphragm motion. To account for respiratory-induced motion using such a single measurement could possibly lead to insufficient target coverage. Therefore, our results suggest monitoring of respiratory motion with CBCT on a more regular basis, and adapt treatment plans to the actual breathing amplitude when necessary.
For 7 out of 12 patients, the averaged CC positions of the diaphragm during the treatment course differed significantly from the baseline diaphragm position as measured on the 4DCT, introducing a systematic interfractional position variation. The patient number in the present study is low and some patients only had a few CBCTs. This means that measurements regarding baseline-shifts could have been random. However, these results emphasize the benefit and need for daily imaging and monitoring to enable baseline positioning correction.
Nevertheless, present and previous results also confirm that respiratory motion in children varies from day-to-day and even within consecutive breathing cycles [14, 17]. The measured respiratory-induced diaphragm motion on CBCTs acquired within a 4-10 minute interval showed significant differences, meaning that the actual respiratory-induced motion during dose delivery can again be different than measured on the CBCT. However, this analysis was only based on a small number of repetitive CBCTs (n=13) evaluated in six patients. Future studies should involve larger imaging datasets for evaluation of measurements on CBCTs for predicting respiratory-induced motion in children. In addition, as mentioned above, it would be interesting to asses respiratory-induced motion online using CBCTs acquired at, for example, the first three treatment fractions. This would enable to identify which patients deviate from their pre-treatment measurements on 4DCT and might benefit from an adaptive approach in order to maintain appropriate tumor dose coverage.
7.5 | Conclusions
In conclusion, respiratory-induced diaphragm motion in children determined on 4DCT does not accurately predict the daily respiratory motion observed on CBCTs, as the amplitude differed statistically significantly in the majority of patients. Our results show the limitations of using a single pre-treatment 4DCT to take the patient-specific respiratory-induced diaphragm motion for treatment planning purposes into account. Regular monitoring of respiratory motion during the treatment course using CBCTs could yield a higher accuracy when a daily adaptation to the actual breathing amplitude takes place.
127