Page 123 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 123
4DCT
The 4DCTs (LightSpeed RT16 system, General Electric Company, Waukesha WI, USA) were acquired during free breathing (using the Varian RPM system v1.7.3). The respiratory cycle was divided into ten phase bins, resulting in ten phase scans (slice thickness 2.5mm). Velocity (Velocity, version 3.1, Varian Medical Systems, Palo Alto, CA, USA) was used to perform a two-step rigid registration. The end- inspiration phase scan (i.e., the 0% phase scan) was used as a reference and was registered to the other nine phase scans. In one patient (no. 7), the 90% phase scan served as the reference, due to motion artefacts on the 0% phase scan. For all other patients and phase scans, no (severe) motion artefacts were seen that could have hampered the registrations. The right diaphragm domes were matched manually in the cranial-caudal (CC) direction, using translations only. The obtained translations resulted in the excursion of the right diaphragm dome throughout the respiratory cycle in the CC direction. The difference between the most extreme translations, typically the 0% to the 50% or 60% phase scan, was defined as the amplitude (A4DCT) (Figure 7.1A).
CBCT
For each patient, CBCT scans during free breathing (Synergy, Elekta Oncology systems, Crawly, UK) for position verification were daily and/or weekly acquired according to a customized extended no-action level (eNAL) protocol [20], totalling 125 CBCT scans (range 4-29 per patient). Six of the 12 patients had multiple CBCTs within one treatment session (total 13, range 2-5, not included in the 125), depending on their treatment protocol (e.g., stereotactic or spinal cord irradiation), or in one case a second CBCT was necessary due to artefacts. These artefacts, however, still allowed sufficient number of useable projection images for evaluation of respiratory-induced diaphragm motion. For all CBCTs, a single projection was acquired in 180ms and the energy was 120kV, tube current 10mA and 10 or 40ms exposure time per projection. The circumferential rotation varied from 200 to 360 degrees and the acquisition time varied between 35s and 120s, resulting in a variation in number of projection images per CBCT (180 to 760).
The methodology to extract the respiratory-induced diaphragm motion has been described previously [14]. In short, for each CBCT, an adapted version of the Amsterdam Shroud (AS) method was used to create an AS image [21], allowing for manual selection of the projection images corresponding to the end-inspiration and end-expiration positions of the right diaphragm dome. In each of those selected projection images, we then manually determined the CC position of the top of the right diaphragm dome. Pixel coordinates were corrected for the scanner geometry and translated relative to the patients’ isocenter [22]. This resulted in a patient- and CBCT-dependent timeframe describing the CC position of the diaphragm in end-inspiration and end-expiration phases (peaks) over the course of CBCT acquisition. The amplitude was defined as the displacement between averaged end-inspiration and averaged end-expiration diaphragm positions (ACBCT) (Figure 7.1B).
120