Page 54 - Molecular features of low-grade developmental brain tumours
P. 54

 2
52
CHAPTER 2
doi:10.1016/j.neuroscience.2008.06.073 (2008).
37. Boer, K. et al. Inflammatory processes in cortical tubers and subependymal giant cell tumors of
tuberous sclerosis complex. Epilepsy Res 78, 7-21, doi:10.1016/j.eplepsyres.2007.10.002 (2008).
38. Nellist, M. et al. Targeted Next Generation Sequencing reveals previously unidentified TSC1 and
TSC2 mutations. BMC Med Genet 16, 10, doi:10.1186/s12881-015-0155-4 (2015).
39. http://broadinstitute.github.io/picard/picard-metricdefinitions.html.
40. Giannikou, K. et al. Whole Exome Sequencing Identifies TSC1/TSC2 Biallelic Loss as the Primary
and Sufficient Driver Event for Renal Angiomyolipoma Development. PLoS Genet 12, e1006242,
doi:10.1371/journal.pgen.1006242 (2016).
41. Li, H. & Durbin, R. Fast and accurate short read alignment with Burrows-Wheeler transform.
Bioinformatics 25, 1754-1760, doi:10.1093/bioinformatics/btp324 (2009).
42. Tyburczy, M. E. et al. Mosaic and Intronic Mutations in TSC1/TSC2 Explain the Majority of TSC Patients with No Mutation Identified by Conventional Testing. PLoS Genet 11, e1005637, doi:10.1371/journal.
pgen.1005637 (2015).
43. http://bio-bwa.sourceforge.net/bwa.shtml.
44. McKenna, A. et al. The Genome Analysis Toolkit: a MapReduce framework for analyzing next-
generation DNA sequencing data. Genome Res 20, 1297-1303, doi:10.1101/gr.107524.110 (2010).
45. Cibulskis, K. et al. Sensitive detection of somatic point mutations in impure and heterogeneous
cancer samples. Nat Biotechnol 31, 213-219, doi:10.1038/nbt.2514 (2013).
46. McLaren, W. et al. Deriving the consequences of genomic variants with the Ensembl API and SNP
Effect Predictor. Bioinformatics 26, 2069-2070, doi:10.1093/bioinformatics/btq330 (2010).
47. http://www.broadinstitute.org/cancer/cga/indelocator
48. DePristo, M. A. et al. A framework for variation discovery and genotyping using next-generation DNA
sequencing data. Nat Genet 43, 491-498, doi:10.1038/ng.806 (2011).
49. Lek, M. et al. Analysis of protein-coding genetic variation in 60,706 humans. Nature 536, 285-291,
doi:10.1038/nature19057 (2016).
50. Cerami, E. et al. The cBio cancer genomics portal: an open platform for exploring multidimensional
cancer genomics data. Cancer Discov 2, 401-404, doi:10.1158/2159-8290.CD-12-0095 (2012).
51. Choi, Y., Sims, G. E., Murphy, S., Miller, J. R. & Chan, A. P. Predicting the functional effect of amino acid
substitutions and indels. PLoS One 7, e46688, doi:10.1371/journal.pone.0046688 (2012).
52. Gao, J. et al. Integrative analysis of complex cancer genomics and clinical profiles using the
cBioPortal. Sci Signal 6, pl1, doi:10.1126/scisignal.2004088 (2013).
53. Ng, P. C. & Henikoff, S. Predicting deleterious amino acid substitutions. Genome Res 11, 863-874,
doi:10.1101/gr.176601 (2001).
54. Reva, B., Antipin, Y. & Sander, C. Predicting the functional impact of protein mutations: application
to cancer genomics. Nucleic Acids Res 39, e118, doi:10.1093/nar/gkr407 (2011).
55. Buccoliero, A. M. et al. Subependymal giant cell astrocytoma: a lesion with activated mTOR pathway and constant expression of glutamine synthetase. Clinical neuropathology 35, 295-301, doi:10.5414/
NP300936 (2016).
56. Yamamoto, K. et al. Rapid regrowth of solitary subependymal giant cell astrocytoma--case report.
Neurol Med Chir (Tokyo) 42, 224-227 (2002).
57. Takei, H., Adesina, A. M. & Powell, S. Z. Solitary subependymal giant cell astrocytoma incidentally
found at autopsy in an elderly woman without tuberous sclerosis complex. Neuropathology 29, 181-
186, doi:10.1111/j.1440-1789.2008.00941.x (2009).
58. Katz, J. S. et al. Unique findings of subependymal giant cell astrocytoma within cortical tubers in





















































   52   53   54   55   56