Page 53 - Molecular features of low-grade developmental brain tumours
P. 53

SEGA IN TSC HAVE TSC1/TSC2 BIALLELIC INACTIVATION & NO BRAF MUTATIONS
19. Peyssonnaux, C. & Eychene, A. The Raf/MEK/ERK pathway: new concepts of activation. Biol Cell 93, 53-62 (2001).
20. Blumcke, I. et al. Low-grade epilepsy-associated neuroepithelial tumours - the 2016 WHO classification. Nat Rev Neurol 12, 732-740, doi:10.1038/nrneurol.2016.173 (2016).
21. Brandner, S. & von Deimling, A. Diagnostic, prognostic and predictive relevance of molecular markers in gliomas. Neuropathol Appl Neurobiol 41, 694-720, doi:10.1111/nan.12246 (2015).
22. Cancer Genome Atlas Research, N. et al. Comprehensive, Integrative Genomic Analysis of Diffuse Lower-Grade Gliomas. N Engl J Med 372, 2481-2498, doi:10.1056/NEJMoa1402121 (2015).
23. Lee, D. et al. BRAF V600E mutations are frequent in dysembryoplastic neuroepithelial tumors and subependymal giant cell astrocytomas. J Surg Oncol 111, 359-364, doi:10.1002/jso.23822 (2015).
24. Penman, C. L., Faulkner, C., Lowis, S. P. & Kurian, K. M. Current Understanding of BRAF Alterations in Diagnosis, Prognosis, and Therapeutic Targeting in Pediatric Low-Grade Gliomas. Front Oncol 5, 54, doi:10.3389/fonc.2015.00054 (2015).
25. Prabowo, A. S. et al. BRAF V600E mutation is associated with mTOR signaling activation in glioneuronal tumors. Brain Pathol 24, 52-66, doi:10.1111/bpa.12081 (2014).
26. Schindler, G. et al. Analysis of BRAF V600E mutation in 1,320 nervous system tumors reveals high mutation frequencies in pleomorphic xanthoastrocytoma, ganglioglioma and extra-cerebellar pilocytic astrocytoma. Acta Neuropathol 121, 397-405, doi:10.1007/s00401-011-0802-6 (2011).
27. Han, S. et al. Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the tuberous sclerosis complex proteins in brain lesions. Cancer Res 64, 812-816 (2004).
28. Jozwiak, J. et al. Brain tumor formation in tuberous sclerosis depends on Erk activation. Neuromolecular Med 9, 117-127 (2007).
29. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121, 179-193, doi:10.1016/j.cell.2005.02.031 (2005).
30. Ma, L. et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal- regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res 67, 7106-7112, doi:10.1158/0008-5472.CAN-06-4798 (2007).
31. Tee, A. R., Anjum, R. & Blenis, J. Inactivation of the tuberous sclerosis complex-1 and -2 gene products occurs by phosphoinositide 3-kinase/Akt-dependent and -independent phosphorylation of tuberin. J Biol Chem 278, 37288-37296, doi:10.1074/jbc.M303257200 (2003).
32. Hang, J. F. et al. Thyroid transcription factor-1 distinguishes subependymal giant cell astrocytoma from its mimics and supports its cell origin from the progenitor cells in the medial ganglionic eminence. Mod Pathol 30, 318-328, doi:10.1038/modpathol.2016.205 (2017).
33. Northrup, H., Krueger, D. A. & International Tuberous Sclerosis Complex Consensus, G. Tuberous sclerosis complex diagnostic criteria update: recommendations of the 2012 Iinternational Tuberous Sclerosis Complex Consensus Conference. Pediatr Neurol 49, 243-254, doi:10.1016/j. pediatrneurol.2013.08.001 (2013).
34. Gomez, M, Sampson, J and Whittemore, V (eds). The Tuberous Sclerosis Complex. 1999. 3rd edn. Oxford University Press, Oxford, England.
35. Louis, D. N. et al. The 2016 World Health Organization Classification of Tumors of the Central Nervous System: a summary. Acta Neuropathol 131, 803-820, doi:10.1007/s00401-016-1545-1 (2016).
36. Boer, K. et al. Cellular localization of metabotropic glutamate receptors in cortical tubers and subependymal giant cell tumors of tuberous sclerosis complex. Neuroscience 156, 203-215,
51
 2














































































   51   52   53   54   55