Page 35 - Molecular features of low-grade developmental brain tumours
P. 35

GENERAL INTRODUCTION & OUTLINE OF THE THESIS
course. Sci Rep 10, 96, doi:10.1038/s41598-019-56146-y (2020).
202. Mills, J. D. et al. Coding and small non-coding transcriptional landscape of tuberous sclerosis complex
cortical tubers: implications for pathophysiology and treatment. Sci Rep 7, 8089, doi:10.1038/
s41598-017-06145-8 (2017).
203. Bartel, D. P. MicroRNAs: target recognition and regulatory functions. Cell 136, 215-233, doi:10.1016/j.
cell.2009.01.002 (2009).
204. Lewis, B. P., Burge, C. B. & Bartel, D. P. Conserved seed pairing, often flanked by adenosines,
indicates that thousands of human genes are microRNA targets. Cell 120, 15-20, doi:10.1016/j.
cell.2004.12.035 (2005).
205. Zhao, Y. & Srivastava, D. A developmental view of microRNA function. Trends Biochem Sci 32, 189-
197, doi:10.1016/j.tibs.2007.02.006 (2007).
206. Cao, X., Yeo, G., Muotri, A. R., Kuwabara, T. & Gage, F. H. Noncoding RNAs in the mammalian central
nervous system. Annu Rev Neurosci 29, 77-103, doi:10.1146/annurev.neuro.29.051605.112839
(2006).
207. Rajman, M. & Schratt, G. MicroRNAs in neural development: from master regulators to fine-tuners.
Development 144, 2310-2322, doi:10.1242/dev.144337 (2017).
208. Prabowo, A. S. et al. Differential expression and clinical significance of three inflammation-related
microRNAs in gangliogliomas. J Neuroinflammation 12, 97, doi:10.1186/s12974-015-0315-7 (2015).
209. Birks, D. K. et al. Survey of MicroRNA expression in pediatric brain tumors. Pediatr Blood Cancer 56,
211-216, doi:10.1002/pbc.22723 (2011).
210. Jones, T. A. et al. Molecular analysis of pediatric brain tumors identifies microRNAs in pilocytic
astrocytomas that target the MAPK and NF-kappaB pathways. Acta Neuropathol Commun 3, 86,
doi:10.1186/s40478-015-0266-3 (2015).
211. Ames, H. M., Yuan, M., Vizcaino, M. A., Yu, W. & Rodriguez, F. J. MicroRNA profiling of low-grade glial
and glioneuronal tumors shows an independent role for cluster 14q32.31 member miR-487b. Mod
Pathol 30, 204-216, doi:10.1038/modpathol.2016.177 (2017).
212. Ho, C. Y. et al. MicroRNA profiling in pediatric pilocytic astrocytoma reveals biologically relevant
targets, including PBX3, NFIB, and METAP2. Neuro Oncol 15, 69-82, doi:10.1093/neuonc/nos269
(2013).
213. Yuan, M. et al. MicroRNA (miR) 125b regulates cell growth and invasion in pediatric low grade glioma.
Sci Rep 8, 12506, doi:10.1038/s41598-018-30942-4 (2018).
214. Zakrzewska, M. et al. Expression-based decision tree model reveals distinct microRNA expression
pattern in pediatric neuronal and mixed neuronal-glial tumors. Bmc Cancer 19, 544, doi:10.1186/
s12885-019-5739-5 (2019).
215. Law, J. A. & Jacobsen, S. E. Establishing, maintaining and modifying DNA methylation patterns in
plants and animals. Nat Rev Genet 11, 204-220, doi:10.1038/nrg2719 (2010).
216. Moran, S., Arribas, C. & Esteller, M. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics 8, 389-399, doi:10.2217/
epi.15.114 (2016).
217. Bock, C. Analysing and interpreting DNA methylation data. Nat Rev Genet 13, 705-719, doi:10.1038/
nrg3273 (2012).
218. Morris, T. J. & Beck, S. Analysis pipelines and packages for Infinium HumanMethylation450 BeadChip
(450k) data. Methods 72, 3-8, doi:10.1016/j.ymeth.2014.08.011 (2015).
219. Du, P. et al. Comparison of Beta-value and M-value methods for quantifying methylation levels by
microarray analysis. BMC Bioinformatics 11, 587, doi:10.1186/1471-2105-11-587 (2010).
33
 1




















































   33   34   35   36   37