Page 34 - Molecular features of low-grade developmental brain tumours
P. 34

 1
32
CHAPTER 1
controlled phase 3 trial. Lancet 381, 125-132, doi:10.1016/S0140-6736(12)61134-9 (2013).
182. Franz, D. N. et al. Everolimus for subependymal giant cell astrocytoma in patients with tuberous sclerosis complex: 2-year open-label extension of the randomised EXIST-1 study. Lancet Oncol 15,
1513-1520, doi:10.1016/S1470-2045(14)70489-9 (2014).
183. Franz, D. N. et al. Long-Term Use of Everolimus in Patients with Tuberous Sclerosis Complex: Final
Results from the EXIST-1 Study. PLoS One 11, e0158476, doi:10.1371/journal.pone.0158476 (2016).
184. Franz, D. N. et al. Everolimus for subependymal giant cell astrocytoma: 5-year final analysis. Ann
Neurol 78, 929-938, doi:10.1002/ana.24523 (2015).
185. Kuki, I. et al. Efficacy and safety of everolimus in patients younger than 12months with congenital
subependymal giant cell astrocytoma. Brain Dev 40, 415-420, doi:10.1016/j.braindev.2018.01.001
(2018).
186. Fukumura, S., Watanabe, T., Takayama, R., Minagawa, K. & Tsutsumi, H. Everolimus Treatment for
an Early Infantile Subependymal Giant Cell Astrocytoma With Tuberous Sclerosis Complex. J Child
Neurol 30, 1192-1195, doi:10.1177/0883073814544703 (2015).
187. Moavero, R. & Curatolo, P. Long-term use of mTORC1 inhibitors in tuberous sclerosis complex
associated neurological aspects. Expert Opinion on Orphan Drugs 8, 215-225, doi:10.1080/216787
07.2020.1789862 (2020).
188.Bissler, J. J. et al. Sirolimus for angiomyolipoma in tuberous sclerosis complex or
lymphangioleiomyomatosis. N Engl J Med 358, 140-151, doi:10.1056/NEJMoa063564 (2008).
189. Krueger, D. A. et al. Long-term treatment of epilepsy with everolimus in tuberous sclerosis. Neurology
87, 2408-2415, doi:10.1212/WNL.0000000000003400 (2016).
190. Krueger, D. A. et al. Everolimus for subependymal giant-cell astrocytomas in tuberous sclerosis. N
Engl J Med 363, 1801-1811, doi:10.1056/NEJMoa1001671 (2010).
191. McCormack, F. X. et al. Efficacy and safety of sirolimus in lymphangioleiomyomatosis. N Engl J Med
364, 1595-1606, doi:10.1056/NEJMoa1100391 (2011).
192. Kaplan, B., Qazi, Y. & Wellen, J. R. Strategies for the management of adverse events associated with
mTOR inhibitors. Transplant Rev (Orlando) 28, 126-133, doi:10.1016/j.trre.2014.03.002 (2014).
193. Soefje, S. A., Karnad, A. & Brenner, A. J. Common toxicities of mammalian target of rapamycin
inhibitors. Target Oncol 6, 125-129, doi:10.1007/s11523-011-0174-9 (2011).
194. van Vliet, E. A. et al. Standardization procedure for plasma biomarker analysis in rat models of epileptogenesis: Focus on circulating microRNAs. Epilepsia 58, 2013-2024, doi:10.1111/epi.13915
(2017).
195. Wang, Z., Gerstein, M. & Snyder, M. RNA-Seq: a revolutionary tool for transcriptomics. Nat Rev Genet
10, 57-63, doi:10.1038/nrg2484 (2009).
196. Mills, J. D. & Janitz, M. Alternative splicing of mRNA in the molecular pathology of neurodegenerative
diseases. Neurobiol Aging 33, 1012 e1011-1024, doi:10.1016/j.neurobiolaging.2011.10.030 (2012).
197. Jeck, W. R. & Sharpless, N. E. Detecting and characterizing circular RNAs. Nat Biotechnol 32, 453-461,
doi:10.1038/nbt.2890 (2014).
198. Kukurba, K. R. & Montgomery, S. B. RNA Sequencing and Analysis. Cold Spring Harb Protoc 2015,
951-969, doi:10.1101/pdb.top084970 (2015).
199. Szabo, L. & Salzman, J. Detecting circular RNAs: bioinformatic and experimental challenges. Nat Rev
Genet 17, 679-692, doi:10.1038/nrg.2016.114 (2016).
200. Conesa, A. et al. A survey of best practices for RNA-seq data analysis. Genome Biol 17, 13, doi:10.1186/
s13059-016-0881-8 (2016).
201. Delev, D. et al. Long-term epilepsy-associated tumors: transcriptional signatures reflect clinical





















































   32   33   34   35   36