Page 30 - Molecular features of low-grade developmental brain tumours
P. 30
1
28
CHAPTER 1
infants: results of the EPISTOP study. Genet Med, doi:10.1038/s41436-020-0823-4 (2020).
112. Henske, E. P. et al. Allelic loss is frequent in tuberous sclerosis kidney lesions but rare in brain
lesions. Am J Hum Genet 59, 400-406 (1996).
113. Caban, C., Khan, N., Hasbani, D. M. & Crino, P. B. Genetics of tuberous sclerosis complex: implications
for clinical practice. Appl Clin Genet 10, 1-8, doi:10.2147/TACG.S90262 (2017).
114. Martin, K. R. et al. The genomic landscape of tuberous sclerosis complex. Nat Commun 8, 15816,
doi:10.1038/ncomms15816 (2017).
115. Carracedo, A. et al. Inhibition of mTORC1 leads to MAPK pathway activation through a PI3K-
dependent feedback loop in human cancer. J Clin Invest 118, 3065-3074, doi:10.1172/JCI34739
(2008).
116. Han, S. et al. Phosphorylation of tuberin as a novel mechanism for somatic inactivation of the
tuberous sclerosis complex proteins in brain lesions. Cancer Res 64, 812-816, doi:10.1158/0008-
5472.can-03-3277 (2004).
117. Ma, L., Chen, Z., Erdjument-Bromage, H., Tempst, P. & Pandolfi, P. P. Phosphorylation and functional
inactivation of TSC2 by Erk implications for tuberous sclerosis and cancer pathogenesis. Cell 121,
179-193, doi:10.1016/j.cell.2005.02.031 (2005).
118. Ma, L. et al. Identification of S664 TSC2 phosphorylation as a marker for extracellular signal-
regulated kinase mediated mTOR activation in tuberous sclerosis and human cancer. Cancer Res
67, 7106-7112, doi:10.1158/0008-5472.CAN-06-4798 (2007).
119. Teis, D., Wunderlich, W. & Huber, L. A. Localization of the MP1-MAPK scaffold complex to endosomes
is mediated by p14 and required for signal transduction. Dev Cell 3, 803-814, doi:10.1016/s1534-
5807(02)00364-7 (2002).
120. Bar-Peled, L., Schweitzer, L. D., Zoncu, R. & Sabatini, D. M. Ragulator is a GEF for the rag GTPases
that signal amino acid levels to mTORC1. Cell 150, 1196-1208, doi:10.1016/j.cell.2012.07.032 (2012).
121. Nada, S., Mori, S., Takahashi, Y. & Okada, M. p18/LAMTOR1: a late endosome/lysosome-specific anchor protein for the mTORC1/MAPK signaling pathway. Methods Enzymol 535, 249-263,
doi:10.1016/B978-0-12-397925-4.00015-8 (2014).
122. de Araujo, M. E. G. et al. Crystal structure of the human lysosomal mTORC1 scaffold complex and its
impact on signaling. Science 358, 377-381, doi:10.1126/science.aao1583 (2017).
123. Arnold, A. et al. Synergistic activity of mTORC1/2 kinase and MEK inhibitors suppresses pediatric low-grade glioma tumorigenicity and vascularity. Neuro Oncol 22, 563-574, doi:10.1093/neuonc/
noz230 (2020).
124. Cuccia, V. et al. Subependymal giant cell astrocytoma in children with tuberous sclerosis. Childs Nerv
Syst 19, 232-243, doi:10.1007/s00381-002-0700-2 (2003).
125. Amin, S. et al. The outcome of surgical management of subependymal giant cell astrocytoma in
tuberous sclerosis complex. Eur J Paediatr Neurol 17, 36-44, doi:10.1016/j.ejpn.2012.10.005 (2013).
126. Goh, S., Butler, W. & Thiele, E. A. Subependymal giant cell tumors in tuberous sclerosis complex.
Neurology 63, 1457-1461, doi:10.1212/01.wnl.0000142039.14522.1a (2004).
127. Adriaensen, M. E. et al. Prevalence of subependymal giant cell tumors in patients with tuberous sclerosis and a review of the literature. Eur J Neurol 16, 691-696, doi:10.1111/j.1468-
1331.2009.02567.x (2009).
128. Kothare, S. V. et al. Severity of manifestations in tuberous sclerosis complex in relation to genotype.
Epilepsia 55, 1025-1029, doi:10.1111/epi.12680 (2014).
129. Kingswood, J. C. et al. TuberOus SClerosis registry to increase disease Awareness (TOSCA) - baseline
data on 2093 patients. Orphanet J Rare Dis 12, 2, doi:10.1186/s13023-016-0553-5 (2017).