Page 29 - Molecular features of low-grade developmental brain tumours
P. 29
GENERAL INTRODUCTION & OUTLINE OF THE THESIS
Neuropathol 94, 180-186, doi:10.1007/s004010050691 (1997).
94. Chen, C. P., Su, Y. N., Hung, C. C., Shih, J. C. & Wang, W. Novel mutation in the TSC2 gene associated
with prenatally diagnosed cardiac rhabdomyomas and cerebral tuberous sclerosis. J Formos Med
Assoc 105, 599-603, doi:10.1016/S0929-6646(09)60157-1 (2006).
95. Glenn, O. A. & Barkovich, A. J. Magnetic resonance imaging of the fetal brain and spine: an increasingly
important tool in prenatal diagnosis, part 1. AJNR Am J Neuroradiol 27, 1604-1611 (2006).
96. Wortmann, S. B., Reimer, A., Creemers, J. W. & Mullaart, R. A. Prenatal diagnosis of cerebral lesions in Tuberous sclerosis complex (TSC). Case report and review of the literature. Eur J Paediatr Neurol
12, 123-126, doi:10.1016/j.ejpn.2007.06.006 (2008).
97. Prabowo, A. S. et al. Fetal brain lesions in tuberous sclerosis complex: TORC1 activation and
inflammation. Brain Pathol 23, 45-59, doi:10.1111/j.1750-3639.2012.00616.x (2013).
98. Tsai, V. et al. Fetal brain mTOR signaling activation in tuberous sclerosis complex. Cereb Cortex 24,
315-327, doi:10.1093/cercor/bhs310 (2014).
99. Sarnat, H. B., Flores-Sarnat, L. & Trevenen, C. L. Synaptophysin immunoreactivity in the human
hippocampus and neocortex from 6 to 41 weeks of gestation. J Neuropathol Exp Neurol 69, 234-245,
doi:10.1097/NEN.0b013e3181d0151f (2010).
100. Poore, B. et al. Inhibition of mTORC1 in pediatric low-grade glioma depletes glutathione and
therapeutically synergizes with carboplatin. Neuro Oncol 21, 252-263, doi:10.1093/neuonc/noy150
(2019).
101. Rodriguez, E. F. et al. PI3K/AKT pathway alterations are associated with clinically aggressive
and histologically anaplastic subsets of pilocytic astrocytoma. Acta Neuropathol 121, 407-420,
doi:10.1007/s00401-010-0784-9 (2011).
102. Hutt-Cabezas, M. et al. Activation of mTORC1/mTORC2 signaling in pediatric low-grade glioma
and pilocytic astrocytoma reveals mTOR as a therapeutic target. Neuro Oncol 15, 1604-1614,
doi:10.1093/neuonc/not132 (2013).
103. Switon, K., Kotulska, K., Janusz-Kaminska, A., Zmorzynska, J. & Jaworski, J. Molecular neurobiology of
mTOR. Neuroscience 341, 112-153, doi:10.1016/j.neuroscience.2016.11.017 (2017).
104. Inoki, K., Li, Y., Xu, T. & Guan, K. L. Rheb GTPase is a direct target of TSC2 GAP activity and regulates
mTOR signaling. Genes Dev 17, 1829-1834, doi:10.1101/gad.1110003 (2003).
105. Sancak, Y. et al. The Rag GTPases bind raptor and mediate amino acid signaling to mTORC1. Science
320, 1496-1501, doi:10.1126/science.1157535 (2008).
106. Dibble, C. C. et al. TBC1D7 is a third subunit of the TSC1-TSC2 complex upstream of mTORC1. Mol
Cell 47, 535-546, doi:10.1016/j.molcel.2012.06.009 (2012).
107. Burnett, P. E., Barrow, R. K., Cohen, N. A., Snyder, S. H. & Sabatini, D. M. RAFT1 phosphorylation
of the translational regulators p70 S6 kinase and 4E-BP1. Proc Natl Acad Sci U S A 95, 1432-1437,
doi:10.1073/pnas.95.4.1432 (1998).
108. Chan, J. A. et al. Pathogenesis of tuberous sclerosis subependymal giant cell astrocytomas: biallelic
inactivation of TSC1 or TSC2 leads to mTOR activation. J Neuropathol Exp Neurol 63, 1236-1242,
doi:10.1093/jnen/63.12.1236 (2004).
109. Qin, W. et al. Ultra deep sequencing detects a low rate of mosaic mutations in tuberous sclerosis
complex. Hum Genet 127, 573-582, doi:10.1007/s00439-010-0801-z (2010).
110. Peron, A., Au, K. S. & Northrup, H. Genetics, genomics, and genotype-phenotype correlations of TSC: Insights for clinical practice. Am J Med Genet C Semin Med Genet 178, 281-290, doi:10.1002/
ajmg.c.31651 (2018).
111. Ogorek, B. et al. TSC2 pathogenic variants are predictive of severe clinical manifestations in TSC
27
1