Page 26 - Molecular features of low-grade developmental brain tumours
P. 26
1
24
CHAPTER 1
in the pathogenesis of dysmorphic neurons. Epilepsy Res 129, 146-156, doi:10.1016/j.
eplepsyres.2016.12.002 (2017).
38. Johnson, A. et al. Comprehensive Genomic Profiling of 282 Pediatric Low- and High-Grade Gliomas
Reveals Genomic Drivers, Tumor Mutational Burden, and Hypermutation Signatures. Oncologist 22,
1478-1490, doi:10.1634/theoncologist.2017-0242 (2017).
39. Keshet, Y. & Seger, R. The MAP kinase signaling cascades: a system of hundreds of components
regulates a diverse array of physiological functions. Methods Mol Biol 661, 3-38, doi:10.1007/978-1-
60761-795-2_1 (2010).
40. Cargnello, M. & Roux, P. P. Activation and function of the MAPKs and their substrates, the MAPK-
activated protein kinases. Microbiol Mol Biol Rev 75, 50-83, doi:10.1128/MMBR.00031-10 (2011).
41. Lawrence, M. C. et al. The roles of MAPKs in disease. Cell Res 18, 436-442, doi:10.1038/cr.2008.37
(2008).
42. Guo, Y. J. et al. ERK/MAPK signalling pathway and tumorigenesis. Exp Ther Med 19, 1997-2007,
doi:10.3892/etm.2020.8454 (2020).
43. Bos, J. L., Rehmann, H. & Wittinghofer, A. GEFs and GAPs: critical elements in the control of small G
proteins. Cell 129, 865-877, doi:10.1016/j.cell.2007.05.018 (2007).
44. Margarit, S. M. et al. Structural evidence for feedback activation by Ras.GTP of the Ras-specific
nucleotide exchange factor SOS. Cell 112, 685-695, doi:10.1016/s0092-8674(03)00149-1 (2003).
45. Bandaru, P., Kondo, Y. & Kuriyan, J. The Interdependent Activation of Son-of-Sevenless and Ras. Cold
Spring Harb Perspect Med 9, doi:10.1101/cshperspect.a031534 (2019).
46. Mitin, N., Rossman, K. L. & Der, C. J. Signaling interplay in Ras superfamily function. Curr Biol 15,
R563-574, doi:10.1016/j.cub.2005.07.010 (2005).
47. Marais, R., Light, Y., Paterson, H. F. & Marshall, C. J. Ras recruits Raf-1 to the plasma membrane for
activation by tyrosine phosphorylation. EMBO J 14, 3136-3145 (1995).
48. Crews, C. M. & Erikson, R. L. Purification of a murine protein-tyrosine/threonine kinase that
phosphorylates and activates the Erk-1 gene product: relationship to the fission yeast byr1 gene
product. Proc Natl Acad Sci U S A 89, 8205-8209, doi:10.1073/pnas.89.17.8205 (1992).
49. Lavoie, H. & Therrien, M. Regulation of RAF protein kinases in ERK signalling. Nat Rev Mol Cell Biol 16,
281-298, doi:10.1038/nrm3979 (2015).
50. Chambard, J. C., Lefloch, R., Pouyssegur, J. & Lenormand, P. ERK implication in cell cycle regulation.
Biochim Biophys Acta 1773, 1299-1310, doi:10.1016/j.bbamcr.2006.11.010 (2007).
51. Zsarnovszky, A. & Belcher, S. M. Spatial, temporal, and cellular distribution of the activated extracellular signal regulated kinases 1 and 2 in the developing and mature rat cerebellum. Brain
Res Dev Brain Res 150, 199-209, doi:10.1016/j.devbrainres.2004.03.012 (2004).
52. Cheng, P., Alberts, I. & Li, X. The role of ERK1/2 in the regulation of proliferation and differentiation of astrocytes in developing brain. Int J Dev Neurosci 31, 783-789, doi:10.1016/j.ijdevneu.2013.09.008
(2013).
53. Wisoff, J. H. et al. Primary neurosurgery for pediatric low-grade gliomas: a prospective multi-
institutional study from the Children’s Oncology Group. Neurosurgery 68, 1548-1554; discussion
1554-1545, doi:10.1227/NEU.0b013e318214a66e (2011).
54. Packer, R. J. et al. Carboplatin and vincristine chemotherapy for children with newly diagnosed
progressive low-grade gliomas. J Neurosurg 86, 747-754, doi:10.3171/jns.1997.86.5.0747 (1997).
55. Marcus, K. J. et al. Stereotactic radiotherapy for localized low-grade gliomas in children: final results of a prospective trial. Int J Radiat Oncol Biol Phys 61, 374-379, doi:10.1016/j.ijrobp.2004.06.012
(2005).