Page 25 - Molecular features of low-grade developmental brain tumours
P. 25
GENERAL INTRODUCTION & OUTLINE OF THE THESIS
19. Penman, C. L., Faulkner, C., Lowis, S. P. & Kurian, K. M. Current Understanding of BRAF Alterations in Diagnosis, Prognosis, and Therapeutic Targeting in Pediatric Low-Grade Gliomas. Front Oncol 5, 54, doi:10.3389/fonc.2015.00054 (2015).
20. Guerreiro Stucklin, A. S. et al. Alterations in ALK/ROS1/NTRK/MET drive a group of infantile hemispheric gliomas. Nat Commun 10, 4343, doi:10.1038/s41467-019-12187-5 (2019).
21. Zhang, J. et al. Whole-genome sequencing identifies genetic alterations in pediatric low-grade gliomas. Nat Genet 45, 602-612, doi:10.1038/ng.2611 (2013).
22. Ryall, S. et al. Integrated Molecular and Clinical Analysis of 1,000 Pediatric Low-Grade Gliomas. Cancer Cell 37, 569-583 e565, doi:10.1016/j.ccell.2020.03.011 (2020).
23. Jozwiak, S., Mandera, M. & Mlynarski, W. Natural History and Current Treatment Options for Subependymal Giant Cell Astrocytoma in Tuberous Sclerosis Complex. Semin Pediatr Neurol 22, 274-281, doi:10.1016/j.spen.2015.10.003 (2015).
24. European Chromosome 16 Tuberous Sclerosis, C. Identification and characterization of the tuberous sclerosis gene on chromosome 16. Cell 75, 1305-1315, doi:10.1016/0092-8674(93)90618-z (1993).
25. van Slegtenhorst, M. et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34.
Science 277, 805-808, doi:10.1126/science.277.5327.805 (1997).
26. DiMario, F. J., Jr. Brain abnormalities in tuberous sclerosis complex. J Child Neurol 19, 650-657, doi:1
0.1177/08830738040190090401 (2004).
27. Rivera, B. et al. Germline and somatic FGFR1 abnormalities in dysembryoplastic neuroepithelial
tumors. Acta Neuropathol 131, 847-863, doi:10.1007/s00401-016-1549-x (2016).
28. Lee, D. et al. BRAF V600E mutations are frequent in dysembryoplastic neuroepithelial tumors and
subependymal giant cell astrocytomas. J Surg Oncol 111, 359-364, doi:10.1002/jso.23822 (2015).
29. Qaddoumi, I. et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1, and MYB mutations occur at high frequency and align with morphology. Acta Neuropathol
131, 833-845, doi:10.1007/s00401-016-1539-z (2016).
30. Ellison, D. W. et al. cIMPACT-NOW update 4: diffuse gliomas characterized by MYB, MYBL1, or FGFR1
alterations or BRAF(V600E) mutation. Acta Neuropathol 137, 683-687, doi:10.1007/s00401-019-
01987-0 (2019).
31. Louis, D. N. et al. cIMPACT-NOW update 6: new entity and diagnostic principle recommendations
of the cIMPACT-Utrecht meeting on future CNS tumor classification and grading. Brain Pathol 30,
844-856, doi:10.1111/bpa.12832 (2020).
32. Blumcke, I., Aronica, E., Urbach, H., Alexopoulos, A. & Gonzalez-Martinez, J. A. A neuropathology-
based approach to epilepsy surgery in brain tumors and proposal for a new terminology use for long-term epilepsy-associated brain tumors. Acta Neuropathol 128, 39-54, doi:10.1007/s00401- 014-1288-9 (2014).
33. Luyken, C. et al. The spectrum of long-term epilepsy-associated tumors: long-term seizure and tumor outcome and neurosurgical aspects. Epilepsia 44, 822-830, doi:10.1046/j.1528-1157.2003.56102.x (2003).
34. Daumas-Duport, C. Dysembryoplastic neuroepithelial tumours. Brain Pathol 3, 283-295, doi:10.1111/j.1750-3639.1993.tb00755.x (1993).
35. Blumcke, I. et al. The CD34 epitope is expressed in neoplastic and malformative lesions associated with chronic, focal epilepsies. Acta Neuropathol 97, 481-490, doi:10.1007/s004010051017 (1999).
36. Liu, J. et al. Evidence for mTOR pathway activation in a spectrum of epilepsy-associated pathologies. Acta Neuropathol Commun 2, 71, doi:10.1186/2051-5960-2-71 (2014).
37. Rossini, L. et al. FCD Type II and mTOR pathway: Evidence for different mechanisms involved
23
1