Page 170 - Molecular features of low-grade developmental brain tumours
P. 170

 6
168
CHAPTER 6
Brain pathology (Zurich, Switzerland), doi:10.1111/bpa.12555 (2017).
19. Qaddoumi, I. et al. Genetic alterations in uncommon low-grade neuroepithelial tumors: BRAF, FGFR1,
and MYB mutations occur at high frequency and align with morphology. Acta neuropathologica 131,
833-845, doi:10.1007/s00401-016-1539-z (2016).
20. Pfister, S. et al. BRAF gene duplication constitutes a mechanism of MAPK pathway activation in low-
grade astrocytomas. J Clin Invest 118, 1739-1749, doi:10.1172/JCI33656 (2008).
21. Dias-Santagata, D. et al. BRAFV600E mutations are common in pleomorphic xanthoastrocytoma: diagnostic and therapeutic implications. PloS one 6, e17948, doi:10.1371/journal.pone.0017948
(2011).
22. Kakkar, A. et al. Alterations in BRAF gene, and enhanced mTOR and MAPK signaling in dysembryoplastic
neuroepithelial tumors (DNTs). Epilepsy Res 127, 141-151, doi:10.1016/j.eplepsyres.2016.08.028
(2016).
23. Stone, T. J. et al. Comprehensive molecular characterisation of epilepsy-associated glioneuronal
tumours. Acta neuropathologica 135, 115-129, doi:10.1007/s00401-017-1773-z (2018).
24. Stone, T. J., Rowell, R., Jayasekera, B. A. P., Cunningham, M. O. & Jacques, T. S. Review: Molecular characteristics of long-term epilepsy-associated tumours (LEATs) and mechanisms for tumour-
related epilepsy (TRE). Neuropathol Appl Neurobiol 44, 56-69, doi:10.1111/nan.12459 (2018).
25. Reschke, C. R. & Henshall, D. C. microRNA and Epilepsy. Advances in experimental medicine and
biology 888, 41-70, doi:10.1007/978-3-319-22671-2_4 (2015).
26. Short, S. C. Science in Focus: MicroRNA in Glioma - Potential as Biomarkers and Therapeutic Targets.
Clinical oncology (Royal College of Radiologists (Great Britain)), doi:10.1016/j.clon.2016.04.048 (2016).
27. Cao, D. D., Li, L. & Chan, W. Y. MicroRNAs: Key Regulators in the Central Nervous System and Their Implication in Neurological Diseases. International journal of molecular sciences 17, doi:10.3390/
ijms17060842 (2016).
28. Garg, N., Vijayakumar, T., Bakhshinyan, D., Venugopal, C. & Singh, S. K. MicroRNA Regulation of Brain
Tumour Initiating Cells in Central Nervous System Tumours. Stem cells international 2015, 141793,
doi:10.1155/2015/141793 (2015).
29. Bongaarts, A. et al. Subependymal giant cell astrocytomas in Tuberous Sclerosis Complex have
consistent TSC1/TSC2 biallelic inactivation, and no BRAF mutations. Oncotarget 8, 95516-95529,
doi:10.18632/oncotarget.20764 (2017).
30. Prabowo, A. S. et al. Differential expression and clinical significance of three inflammation-related
microRNAs in gangliogliomas. Journal of neuroinflammation 12, 97, doi:10.1186/s12974-015-0315-7
(2015).
31. Ritchie, M. E. et al. A comparison of background correction methods for two-colour microarrays.
Bioinformatics 23, 2700-2707, doi:10.1093/bioinformatics/btm412 (2007).
32. Iyer, A. et al. MicroRNA-146a: a key regulator of astrocyte-mediated inflammatory response. PloS
one 7, e44789, doi:10.1371/journal.pone.0044789 (2012).
33. Ramakers, C., Ruijter, J. M., Deprez, R. H. & Moorman, A. F. Assumption-free analysis of quantitative
real-time polymerase chain reaction (PCR) data. Neurosci Lett 339, 62-66 (2003).
34. Ruijter, J. M. et al. Amplification efficiency: linking baseline and bias in the analysis of quantitative
PCR data. Nucleic Acids Res 37, e45, doi:10.1093/nar/gkp045 (2009).
35. de Biase, D. et al. miRNAs expression analysis in paired fresh/frozen and dissected formalin fixed
and paraffin embedded glioblastoma using real-time pCR. PloS one 7, e35596, doi:10.1371/journal.
pone.0035596 (2012).
36. Scott, A., Ambannavar, R., Jeong, J., Liu, M. L. & Cronin, M. T. Real-time PCR-based gene expression






















































   168   169   170   171   172