Page 52 - Physico-Chemical Niche Conditions for Bone Cells
P. 52

Physicochemical niche conditions and mechanosensing
doi:10.1002/jbm.1292.
96. Franchi, M. V.; Reeves, N.D.; Narici, M. V. Skeletal muscle remodeling in response to
eccentric vs. concentric loading: Morphological, molecular, and metabolic adaptations.
Front. Physiol. 2017, 8, 447–462, doi:10.3389/fphys.2017.00447.
97. Herbert, R.D.; Bolsterlee, B.; Gandevia, S.C. Passive changes in muscle length. J.
Appl. Physiol. 2018, 1–21, doi:10.1152/japplphysiol.00673.2018.
98. Lieber, R.L. Biomechanical response of skeletal muscle to eccentric contractions. J.
Sport Heal. Sci. 2018, 7, 294–309, doi:10.1016/j.jshs.2018.06.005.
99. Phoenix, J.; Edwards, R.H.; Jackson, M.J. Inhibition of Ca 2+ -induced cytosolic enzyme efflux from skeletal muscle by vitamin E and related compounds . Biochem. J.
2015, 257, 207–213, doi:10.1042/bj2570207.
100. Bacabac, R.G.; Mizuno, D.; Schmidt, C.F.; MacKintosh, F.C.; Van Loon, J.J.W.A.;
Klein-Nulend, J.; Smit, T.H. Round versus flat: Bone cell morphology, elasticity, and mechanosensing. J. Biomech. 2008, 41, 1590–1598, doi:10.1016/j.jbiomech.2008.01.031.
101. Zeng, Y.; Ebong, E.E.; Fu, B.M.; Tarbell, J.M. The structural stability of the endothelial glycocalyx after enzymatic removal of glycosaminoglycans. PLoS One 2012, 7, 1–14, doi:10.1371/journal.pone.0043168.
102. Pavalko, F.M.; Chen, N.X.; Turner, C.H.; Burr, D.B.; Atkinson, S.; Hsieh, Y.-F.; Qiu, J.; Duncan, R.L. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. Physiol. 1998, 275, C1591– C1601, doi:10.1152/ajpcell.1998.275.6.C1591.
103. Bacabac, R.G.; Smith, T.H.; Heethaar, R.M.; Van Loon, J.J.W.A.; Pourquie, M.J.M.B.; Nieuwstadt, F.T.M.; Klein-Nulend, J. Characteristics of the parallel-plate flow chamber for mechanical stimulation of bone cells under microgravity. Eur. Sp. Agency 2002, 9, 83–84.
104. Mullender, M.G.; van der Meer, D.D.; Huiskes, R.; Lips, P. Osteocyte density changes in aging and osteoporosis. Bone 1996, 18, 109–113, doi:10.1016/8756-3282(95)00444- 0.
105. Busse, B.; Djonic, D.; Milovanovic, P.; Hahn, M.; Püschel, K.; Ritchie, R.O.; Djuric, M.; Amling, M. Decrease in the osteocyte lacunar density accompanied by hypermineralized lacunar occlusion reveals failure and delay of remodeling in aged human bone. Aging Cell 2010, 9, 1065–1075, doi:10.1111/j.1474-9726.2010.00633.x.
106. Kadi, F.; Charifi, N.; Denis, C.; Lexell, J. Satellite cells and myonuclei in young and elderly women and men. Muscle Nerve 2004, 29, 120–127, doi:10.1002/mus.10510.
107. Wang, Y.; Wehling-Henricks, M.; Welc, S.S.; Fisher, A.L.; Zuo, Q.; Tidball, J.G. Aging of the immune system causes reductions in muscle stem cell populations, promotes their shift to a fibrogenic phenotype, and modulates sarcopenia. FASEB J. 2019, 33, 1415–1427, doi:10.1096/fj.201800973R.
108. Chalil, S.; Pierre, N.; Bakker, A.D.; Manders, R.J.; Pletsers, A.; Francaux, M.; Klein- Nulend, J.; Jaspers, R.T.; Deldicque, L. Aging related ER stress is not responsible for anabolic resistance in mouse skeletal muscle. Biochem. Biophys. Res. Commun. 2015, 468, 702–707, doi:10.1016/j.bbrc.2015.11.019.
109. Chalil, S.; Jaspers, R.T.; Manders, R.J.; Klein-Nulend, J.; Bakker, A.D.; Deldicque, L. Increased endoplasmic reticulum stress in mouse osteocytes with aging alters cox-2 response to mechanical stimuli. Calcif. Tissue Int. 2015, 96, 123–128, doi:10.1007/s00223-014-9944-6.
110. Hemmatian, H.; Laurent, M.R.; Ghazanfari, S.; Vanderschueren, D.; Bakker, A.D.; Klein-Nulend, J.; Van Lenthe, G.H. Accuracy and reproducibility of mouse cortical bone microporosity as quantified by desktop microcomputed tomography. PLoS One 2017, 12, 1–16, doi:10.1371/journal.pone.0182996.
111. van Lenthe, G.H.; Jalali, R.; Hemmatian, H.; Semeins, C.M.; Hogervorst, J.M.A.; Bakker, A.D.; Klein-Nulend, J. Mechanical loading differentially affects osteocytes in fibulae from lactating mice compared to osteocytes in virgin mice: possible role for lacuna size. Calcif. Tissue Int. 2018, 103, 675–685, doi:10.1007/s00223-018-0463-8.
50










































































   50   51   52   53   54