Page 50 - Physico-Chemical Niche Conditions for Bone Cells
P. 50

Physicochemical niche conditions and mechanosensing
Biol. Chem. 2004, 279, 22158–22165, doi:10.1074/jbc.M401343200.
58. Chen, Q.; Shou, P.; Zhang, L.; Xu, C.; Zheng, C.; Han, Y.; Li, W.; Huang, Y.; Zhang, X.; Shao, C.; et al. An osteopontin-integrin interaction plays a critical role in directing adipogenesis and osteogenesis by mesenchymal stem cells. Stem Cells 2014, 32,
327–337, doi:10.1002/stem.1567.
59. Jaspers, R.T.; Bravenboer, Na. Biochemical interaction between muscle and bone: A
physiological reality? Clin. Rev. Bone Miner. Metab. 2014, 12, 27–43.
60. Hu, K.; Olsen, B. The roles of vascular endothelial growth factor in bone repair and
regeneration. Bone 2016, 91, 30–38, doi:10.1016/j.bone.2016.06.013.
61. Marcus, R. Mechanisms of exercise effects on bone. In Principles of Bone Biology;
Elsevier, 2002; Vol. 55, pp. 1477–1488 ISBN 9789173851367.
62. Hamrick, M.W. A role for myokines in muscle-bone interactions. Exerc. Sport Sci. Rev.
2011, 39, 43–47, doi:10.1097/JES.0b013e318201f601.
63. Huijing, P.A.; Jaspers, R.T. Adaptation of muscle size and myofascial force
transmission: a review and some new experimental results. Scand. J. Med. Sci. Sport.
2005, 15, 349–380, doi:10.1111/j.1600-0838.2005.00457.x.
64. Tarbell, J.; Cancel, L. The glycocalyx and its significance in human medicine. J. Intern.
Med. 2016, 280, 97–113, doi:10.1111/joim.12465.
65. Thi, M.M.; Tarbell, J.M.; Weinbaum, S.; Spray, D.C. The role of the glycocalyx in
reorganization of the actin cytoskeleton under fluid shear stress: A “bumper-car” model.
Proc. Natl. Acad. Sci. USA 2004, 101, 16483–16488, doi:10.1073/pnas.0407474101.
66. Klein-Nulend, J.; Bakker, A.D.; Bacabac, R.G.; Vatsa, A.; Weinbaum, S. Mechanosensation and transduction in osteocytes. Bone 2013, 54, 182–190,
doi:10.1016/j.bone.2012.10.013.
67. Tatsumi, R. Mechano-biology of skeletal muscle hypertrophy and regeneration:
Possible mechanism of stretch-induced activation of resident myogenic stem cells.
Anim. Sci. J. 2010, 81, 11–20, doi:10.1111/j.1740-0929.2009.00712.x.
68. Hua, W.; Zhang, M.; Wang, Y.; Yu, L.; Zhao, T.; Qiu, X.; Wang, L. Mechanical stretch regulates microRNA expression profile via NF-κB activation in C2C12 myoblasts. Mol.
Med. Rep. 2016, 14, 5084–5092, doi:10.3892/mmr.2016.5907.
69. Nowlan, N.; Bourdon, C.; Dumas, G.; Tajbakhsh, S.; Prendergast, P. Developing bones
are differentially affected by compromised skeletal muscle formation. Bone 2010, 46,
1275–1285, doi:10.1016/j.bone.2009.11.026.
70. Döring, F.; Onur, S.; Fischer, A.; Boulay, M.; Pérusse, L.; Rankinen, T.; Rauramaa, R.;
Wolfarth, B.; Bouchard, C. A common haplotype and the Pro582Ser polymorphism of the hypoxia-inducible factor-1α ( HIF1A ) gene in elite endurance athletes. J. Appl. Physiol. 2010, 108, 1497–1500, doi:10.1152/japplphysiol.01165.2009.
71. Wang, Y.; Wan, C.; Deng, L.; Liu, X.; Cao, X.; Gilbert, S.; Bouxsein, M.; Faugere, M.- C.; Guldberg, R.; Gerstenfeld, L.; et al. The hypoxia-inducible factor alpha pathway couples angiogenesis to osteogenesis during skeletal development. J. Clin. Invest. 2007, 117, 1616–26, doi:10.1172/JCI31581.
72. Cicchillitti, L.; Di Stefano, V.; Isaia, E.; Crimaldi, L.; Fasanaro, P.; Ambrosino, V.; Antonini, A.; Capogrossi, M.; Gaetano, C.; Piaggio, G.; et al. Hypoxia-inducible factor 1-α induces miR-210 in normoxic differentiating myoblasts. J. Biol. Chem. 2012, 287, 44761–71, doi:10.1074/jbc.M112.421255.
73. Arnett, T.R. Acidosis, hypoxia and bone. Arch. Biochem. Biophys. 2010, 503, 103–109, doi:10.1016/j.abb.2010.07.021.
74. Stegen, S.; Stockmans, I.; Moermans, K.; Thienpont, B.; Maxwell, P.H.; Carmeliet, P.; Carmeliet, G. Osteocytic oxygen sensing controls bone mass through epigenetic regulation of sclerostin. Nat. Commun. 2018, 9, 2557–2572, doi:10.1038/s41467-018- 04679-7.
75. Lundby, C.; Calbet, J.A.L.; Robach, P. The response of human skeletal muscle tissue to hypoxia. Cell. Mol. Life Sci. 2009, 66, 3615–3623, doi:10.1007/s00018-009-0146-8.
76. Wang, Q.; Wang, D.; Yan, G.; Sun, L.; Tang, C. TRPC6 is required for hypoxia-induced
basal intracellular calcium concentration elevation, and for the proliferation and
48



























































   48   49   50   51   52