Page 304 - Microbial methane cycling in a warming world From biosphere to atmosphere Michiel H in t Zandt
P. 304
References
Turner AJ, Frankenberg C, Wennberg PO et al. Ambiguity in the causes for decadal trends in atmospheric methane and hydroxyl. Proc Natl Acad Sci U S A 2017;114:5367–72.
Tveit A, Schwacke R, Svenning MM et al. Organic carbon transformations in high-Arctic peat soils: Key functions and microorganisms. ISME J 2013;7:299–311.
Tveit AT, Hestnes AG, Robinson SL et al. Widespread soil bacterium that oxidizes atmospheric methane. Proc Natl Acad Sci U S A 2019;116:8515–24.
Tveit AT, Urich T, Frenzel P et al. Metabolic and trophic interactions modulate methane production by Arctic peat microbiota in response to warming. Proc Natl Acad Sci U S A 2015;112:E2507-2516.
Ueno A, Shimizu S, Tamamura S et al. Anaerobic decomposition of humic substances by Clostridium from the deep subsurface. Sci Rep 2016;6:1–9.
Ünal B, Perry VR, Sheth M et al. Trace elements affect methanogenic activity and diversity in enrichments from subsurface coal bed produced water. Front Microbiol 2012;3:262–75.
UNHCR. Climate change and disaster displacement. United Nations High Comm Refug 2020.
Vaksmaa A, Guerrero-Cruz S, van Alen TA et al. Enrichment of anaerobic nitrate-dependent methanotrophic ‘Candidatus Methanoperedens nitroreducens’ archaea from an Italian paddy field soil. Appl Microbiol Biotechnol 2017a;101:7075–84.
Vaksmaa A, Jetten MSM, Ettwig KF et al. McrA primers for the detection and quantification of the anaerobic archaeal methanotroph “Candidatus Methanoperedens nitroreducens”. Appl Microbiol Biotechnol 2017b;101:1631–41.
Vaksmaa A, Lüke C, van Alen T et al. Distribution and activity of the anaerobic methanotrophic community in a nitrogen-fertilized Italian paddy soil. FEMS Microbiol Ecol 2016;92:1–11.
Valentine D, Holland E, Schimel D. Ecosystem and physiological controls over methane production in northern wetlands. J Geophys Res 1994;99:1563–71.
Vanwonterghem I, Evans PN, Parks DH et al. Methylotrophic methanogenesis discovered in the archaeal phylum Verstraetearchaeota. Nat Microbiol 2016;1:1–9.
Venables WN, Ripley BD. Modern Applied Statistics with S. Fourth edi., 2002.
Videla HA, Herrera LK. Understanding microbial inhibition of corrosion. A comprehensive overview. Int
Biodeterior Biodegradation 2009;63:896–900.
Vigneron A, Cruaud P, Langlois V et al. Ultra-small and abundant: Candidate phyla radiation bacteria are
potential catalysts of carbon transformation in a thermokarst lake ecosystem. Limnol Oceanogr Lett
2020;5:212–20.
Vigneron A, Cruaud P, Pignet P et al. Archaeal and anaerobic methane oxidizer communities in the Sonora
Margin cold seeps, Guaymas Basin (Gulf of California). ISME J 2013;7:1595–608.
Vink A, Steffen H, Reinhardt L et al. Holocene relative sea-level change, isostatic subsidence and the radial
viscosity structure of the mantle of northwest Europe (Belgium, the Netherlands, Germany, southern North
Sea). Quat Sci Rev 2007;26:3249–75.
Viollier E, Inglett PW, Hunter K et al. The ferrozine method revisited: Fe(II)/Fe(III) determination in natural
waters. Appl Geochemistry 2000;15:785–90.
Vogel J, Schuur EAG, Trucco C et al. Response of CO2 exchange in a tussock tundra ecosystem to permafrost
thaw and thermokarst development. J Geophys Res Biogeosciences 2009;114:1–14.
Voigt C, Lamprecht RE, Marushchak ME et al. Warming of subarctic tundra increases emissions of all three
important greenhouse gases - carbon dioxide, methane, and nitrous oxide. Glob Chang Biol
2017a;23:3121–38.
Voigt C, Marushchak ME, Abbott BW et al. Nitrous oxide emissions from permafrost-affected soils. Nat Rev
Earth Environ 2020:1–15.
Voigt C, Marushchak ME, Lamprecht RE et al. Increased nitrous oxide emissions from Arctic peatlands after
permafrost thaw. Proc Natl Acad Sci U S A 2017b;114:6238–43.
Wagner D. Effect of varying soil water potentials on methanogenesis in aerated marshland soils. Sci Rep 2017;7:1–9.
Wagner D, Kobabe S, Liebner S. Bacterial community structure and carbon turnover in permafrost-affected soils of the Lena Delta, northeastern Siberia. Can J Microbiol 2009;55:73–83.
302