Page 301 - Microbial methane cycling in a warming world From biosphere to atmosphere Michiel H in t Zandt
P. 301
Simankova M V., Parshina SN, Tourova TP et al. Methanosarcina lacustris sp. nov., a new psychrotolerant methanogenic archaeon from anoxic lake sediments. Syst Appl Microbiol 2001;24:362–7.
Singleton CM, McCalley CK, Woodcroft BJ et al. Methanotrophy across a natural permafrost thaw environment. ISME J 2018;12:2544–58.
Singleton DR, Hu J, Aitken MD. Heterologous expression of polycyclic aromatic hydrocarbon ring- hydroxylating dioxygenase genes from a novel pyrene-degrading Betaproteobacterium. 2012:3552–9.
Sivan O, Adler M, Pearson A et al. Geochemical evidence for iron-mediated anaerobic oxidation of methane. Limnol Oceanogr 2011;56:1536–44.
Sivan O, Shusta SS, Valentine DL. Methanogens rapidly transition from methane production to iron reduction. Geobiology 2016;14:190–203.
Sliekers AO, Derwort N, Gomez JLC et al. Completely autotrophic nitrogen removal over nitrite in one single reactor. Water Res 2002;36:2475–82.
Slobodkin A. The family Peptostreptococcaceae. The Prokaryotes: Firmicutes and Tenericutes. Vol 9783642301. Springer-Verlag Berlin Heidelberg, 2014, 291–302.
Smemo KA, Yavitt JB. Anaerobic oxidation of methane: An underappreciated aspect of methane cycling in peatland ecosystems? Biogeosciences 2011;8:779–93.
Smith LC, Sheng Y, MacDonald GM et al. Atmospheric science: Disappearing Arctic lakes. Science 2005;308:1429.
Söhngen NL. Het onstaan en verdwijnen van waterstof en methaan onder den invloed van organisch leven. 1906. Sorokin DY, Makarova KS, Abbas B et al. Discovery of extremely halophilic, methyl-reducing euryarchaea
provides insights into the evolutionary origin of methanogenesis. Nat Microbiol 2017;2:1–11.
Sorokin DY, Merkel AY. Methanonatronarchaeum. Bergey’s Manual of Systematics of Archaea and Bacteria.
Wiley, 2019, 1–6.
Sorokin DY, Merkel AY, Abbas B et al. Methanonatronarchaeum thermophilum gen. nov., sp. nov. and
“Candidatus Methanohalarchaeum thermophilum”, extremely halo(natrono)philic methyl-reducing methanogens from hypersaline lakes comprising a new euryarchaeal class Methanonatronarchae. Int J Syst Evol Microbiol 2018;68:2199–208.
Sousa FL, Neukirchen S, Allen JF et al. Lokiarchaeon is hydrogen dependent. Nat Microbiol 2016;1, DOI: 10.1038/nmicrobiol.2016.34.
Spang A, Saw JH, Jørgensen SL et al. Complex archaea that bridge the gap between prokaryotes and eukaryotes. Nature 2015;521:173–9.
Spang A, Stairs CW, Dombrowski N et al. Proposal of the reverse flow model for the origin of the eukaryotic cell based on comparative analyses of Asgard archaeal metabolism. Nat Microbiol 2019;4:1138–48.
Spangenberg I, Overduin PP, Damm E et al. Methane pathways in winter ice of thermokarst lakes, lagoons and coastal waters in North Siberia. Cryosph Discuss 2020:1–28.
Speers AM, Reguera G. Electron donors supporting growth and electroactivity of Geobacter sulfurreducens anode biofilms. Appl Environ Microbiol 2012;78:437–44.
Speth DR, in ‘t Zandt MH, Guerrero-Cruz S et al. Genome-based microbial ecology of anammox granules in a full-scale wastewater treatment system. Nat Commun 2016;7:1–10.
Sprenger WW, van Belzen MC, Rosenberg J et al. Methanomicrococcus blatticola gen. nov., sp. nov., a methanol- and methylamine-reducing methanogen from the hindgut of the cockroach Periplaneta americana. Int J Syst Evol Microbiol 2000;50:1989–99.
Spring S, Scheuner C, Lapidus A et al. The genome sequence of Methanohalophilus mahii SLPT reveals differences in the energy metabolism among members of the Methanosarcinaceae inhabiting freshwater and saline environments. Archaea 2010;2010:690737.
Stackhouse B, Lau MCY, Vishnivetskaya T et al. Atmospheric CH4 oxidation by Arctic permafrost and mineral cryosols as a function of water saturation and temperature. Geobiology 2017;15:94–111.
Stadnitskaia A, Muyzer G, Abbas B et al. Biomarker and 16S rDNA evidence for anaerobic oxidation of methane and related carbonate precipitation in deep-sea mud volcanoes of the Sorokin Trough, Black Sea. Mar Geol 2005;217:67–96.
Stahl DA, Amann RI. Development and application of nucleic acid probes in bacterial systematics. In: Stackebrandt E, Goodfellow M (eds.). Nucleic Acid Techniques in Bacterial Systematics. Chichester: John Wiley & Sons Ltd., 1991, 205–48.
Stantscheff R, Kuever J, Rabenstein A et al. Isolation and differentiation of methanogenic archaea from mesophilic corn-fed on-farm biogas plants with special emphasis on the genus Methanobacterium. Appl Microbiol Biotechnol 2014;98:5719–35.
R
299