Page 292 - Microbial methane cycling in a warming world From biosphere to atmosphere Michiel H in t Zandt
P. 292
References
Lynd LR, Weimer PJ, van Zyl WH et al. Microbial cellulose utilization: Fundamentals and biotechnology. Microbiol Mol Biol Rev 2002;66:506–77.
Lyu Z, Lu Y. Comparative genomics of three Methanocellales strains reveal novel taxonomic and metabolic features. Environ Microbiol Rep 2015;7:526–37.
MacFarling Meure C, Etheridge D, Trudinger C et al. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys Res Lett 2006;33:L14810.
Mack MC, Schuur EAG, Bret-Harte MS et al. Ecosystem carbon storage in arctic tundra reduced by long-term nutrient fertilization. 2004;431:658–61.
Mackelprang R, Burkert A, Haw M et al. Microbial survival strategies in ancient permafrost: insights from metagenomics. ISME J 2017;11:2305–18.
Mackelprang R, Saleska SR, Jacobsen CS et al. Permafrost meta-omics and climate change. Annu Rev Earth Planet Sci 2016;44:439–62.
Mackelprang R, Waldrop MP, DeAngelis KM et al. Metagenomic analysis of a permafrost microbial community reveals a rapid response to thaw. Nature 2011;480:368–71.
Macleod F, Kindler GS, Wong HL et al. Asgard archaea: Diversity, function, and evolutionary implications in a range of microbiomes. AIMS Microbiol 2019;5:48–61.
Madigan MT, Martinko JM, Stahl DA et al. Brock Biology of Microorganisms. 15th ed. Pearson Education Limited, 2019.
Maeder DL, Anderson I, Brettin TS et al. The Methanosarcina barkeri genome: Comparative analysis with Methanosarcina acetivorans and Methanosarcina mazei reveals extensive rearrangement within methanosarcinal genomes. J Bacteriol 2006;188:7922–31.
Maestrojuan GM, Boone DR. Characterization of Methanosarcina barkeri MST Methanosarcina mazei S-6T, and Methanosarcina vacuolata Z-761T. Int J Syst Bacteriol 1991;41:267–74.
Makarova KS, Grishin N V, Koonin E V. The HicAB cassette, a putative novel, RNA-targeting toxin-antitoxin system in Archaea and Bacteria. Bioinformatics 2006;22:2581–4.
Makarova KS, Wolf YI, Koonin E V. Comprehensive comparative-genomic analysis of Type 2 toxin-antitoxin systems and related mobile stress response systems in prokaryotes. Biol Direct 2009;4:19.
Makarova KS, Wolf YI, Koonin E V. Comparative genomics of defense systems in Archaea and Bacteria. Nucleic Acids Res 2013;41:4360–77.
Manohar CS, Raghukumar C. Fungal diversity from various marine habitats deduced through culture- independent studies. FEMS Microbiol Lett 2013;341:69–78.
Mao C, Kou D, Chen L et al. Permafrost nitrogen status and its determinants on the Tibetan Plateau. Glob Chang Biol 2020, DOI: 10.1111/gcb.15205.
Marquart KA, Haller BR, Paper JM et al. Influence of pH on the balance between methanogenesis and iron reduction. Geobiology 2019;17:185–98.
Martineau C, Whyte LG, Greer CW. Stable isotope probing analysis of the diversity and activity of methanotrophic bacteria in soils from the Canadian High Arctic. Appl Environ Microbiol 2010;76:5773– 84.
Martinez-Cruz K, Leewis M-C, Herriott IC et al. Anaerobic oxidation of methane by aerobic methanotrophs in sub-Arctic lake sediments. Sci Total Environ 2017;607–608:23–31.
Martinez-Cruz K, Sepulveda-Jauregui A, Walter Anthony K et al. Geographic and seasonal variation of dissolved methane and aerobic methane oxidation in Alaskan lakes. Biogeosciences 2015;12:4595–606.
Martino A, Rhodes ME, León-Zayas R et al. Microbial diversity in sub-seafloor sediments from the Costa Rica Margin. Geosciences 2019;9:218.
Marushchak ME, Pitkamaki A, Koponen H et al. Hot spots for nitrous oxide emissions found in different types of permafrost peatlands. Glob Chang Biol 2011;17:2601–14.
Matheus Carnevali PB, Herbold CW, Hand KP et al. Distinct microbial assemblage structure and archaeal diversity in sediments of Arctic thermokarst lakes differing in methane sources. Front Microbiol 2018;9:1–15.
Matheus Carnevali PB, Rohrssen M, Williams MR et al. Methane sources in Arctic thermokarst lake sediments on the North Slope of Alaska. Geobiology 2015;13:181–97.
Matveev A, Laurion I, Deshpande BN et al. High methane emissions from thermokarst lakes in subarctic peatlands. Limnol Oceanogr 2016;61:S150–64.
Matveev A, Laurion I, Vincent WF. Methane and carbon dioxide emissions from thermokarst lakes on mineral soils. Arct Sci 2018;4:584–604.
290