Page 274 - Microbial methane cycling in a warming world From biosphere to atmosphere Michiel H in t Zandt
P. 274

References
References
Abbasian F, Lockington R, Megharaj M et al. The biodiversity changes in the microbial population of soils contaminated with crude oil. Curr Microbiol 2016;72:663–70.
Abbott BW, Jones JB. Permafrost collapse alters soil carbon stocks, respiration, CH4, and N2O in upland tundra. Glob Chang Biol 2015;21:4570–87.
Abbott BW, Jones JB, Godsey SE et al. Patterns and persistence of hydrologic carbon and nutrient export from collapsing upland permafrost. Biogeosciences 2015;12:3725–40.
Aben RCH, Barros N, van Donk E et al. Cross continental increase in methane ebullition under climate change. Nat Commun 2017;8:1–8.
Abnizova A, Siemens J, Langer M et al. Small ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions ponds with major impact: The relevance of ponds and lakes in permafrost landscapes to carbon dioxide emissions. Small, Glob Biogeochem Cycles 2012;26:GB2041.
Achtnich C, Bak F, Conrad R. Competition for electron-donors among nitrate reducers, ferric iron reducers, sulfate reducers, and methanogens in anoxic paddy soil. Biol Fertil Soils 1995;19:65–72.
ACIA. Arctic Climate Impact Assessment. ACIA Overview Report. Cambridge University Press, 2005. Acinas SG, Marcelino LA, Klepac-Ceraj V et al. Divergence and redundancy of 16S rRNA sequences in
genomes with multiple rrn operons. J Bacteriol 2004;186:2629–35.
Adler D, Murdoch D, Nenadic O et al. RGL - 3D visualization device system for R using OpenGL. 2018. Afkar E, Fukumori Y. Purification and characterization of triheme cytochrome c7 from the metal-reducing
bacterium, Geobacter metallireducens. FEMS Microbiol Lett 1999;175:205–10.
Aislabie JM, Chhour K-L, Saul DJ et al. Dominant bacteria in soils of Marble Point and Wright Valley, Victoria
Land, Antarctica. Soil Biol Biochem 2006;38:3041–56.
Aklujkar M, Krushkal J, DiBartolo G et al. The genome sequence of Geobacter metallireducens: features of
metabolism, physiology and regulation common and dissimilar to Geobacter sulfurreducens. BMC
Microbiol 2009;9:1–22.
Al-Jubori A, Johnston S, Boyer C et al. Coalbed methane : Clean energy for the world. Oilf Rev 2009;21:4–13. AlAbbas FM, Bhola SM, Spear JR et al. The shielding effect of wild type iron reducing bacterial flora on the
corrosion of linepipe steel. Eng Fail Anal 2013;33:222–35.
Albers S-V, Jarrell KF. The archaellum: how archaea swim. Front Microbiol 2015;6:1–12.
Allan J, Ronholm J, Mykytczuk NCS et al. Methanogen community composition and rates of methane
consumption in Canadian High Arctic permafrost soils. Environ Microbiol Rep 2014;6:136–44. Alneberg J, Bjarnason BS, Bruijn I De et al. Binning metagenomic contigs by coverage and composition. Nat
Methods 2014;11:1144–6.
Alvarez L V, Groenewald JZ, Crous PW. Revising the Schizoparmaceae: Coniella and its synonyms Pilidiella
and Shizoparme. Stud Mycol 2017;85:1–34.
Amann RI, Binder BJ, Olson RJ et al. Combination of 16S rRNA-targeted oligonucleotide probes with flow
cytometry for analyzing mixed microbial populations. Appl Environ Microbiol 1990;56:1919–25.
Amos RT, Bekins BA, Cozzarelli IM et al. Evidence for iron-mediated anaerobic methane oxidation in a crude
oil-contaminated aquifer. Geobiology 2012;10:506–17.
Anantharaman K, Brown CT, Hug LA et al. Thousands of microbial genomes shed light on interconnected
biogeochemical processes in an aquifer system. Nat Commun 2016;7:1–11.
Anders HJ, Kaetzke A, Kämpfer P et al. Taxonomic position of aromatic-degrading denitrifying Pseudomonas
strains K 172 and KB 740 and their description as new members of the genera Thauera, as Thauera
aromatica sp. nov., and Azoarcus, as Azoarcus evansii sp. nov. Int J Syst Bacteriol 1995;45:327–33. Angel R, Claus P, Conrad R. Methanogenic archaea are globally ubiquitous in aerated soils and become active
under wet anoxic conditions. ISME J 2012;6:847–62.
Angle JC, Morin TH, Solden LM et al. Methanogenesis in oxygenated soils is a substantial fraction of wetland
methane emissions. Nat Commun 2017;8:1–9.
Anisimov OA. Potential feedback of thawing permafrost to the global climate system through methane emission.
Environ Res Lett 2007;2:045016.
Anisimov OA, Kokorev V, Reneva S et al. Modelling methane fluxes from terrestrial and sub-aquatic
permafrost in East Siberia: evaluation of potential impact on global climate. AGUFM 2012;2012:B14D-08.
272

























































   272   273   274   275   276