Page 152 - Microbial methane cycling in a warming world From biosphere to atmosphere Michiel H in t Zandt
P. 152

Chapter 7. Methane cycling in Arctic thermokarst lake sediments Abstract
Arctic permafrost soils store large amounts of organic matter that is sensitive to temperature increases and subsequent microbial degradation to methane (CH4) and carbon dioxide (CO2). Here, we studied methanogenic and methanotrophic activity and community composition in thermokarst lake sediments from Utqiaġvik (formerly Barrow), Alaska. This experiment was carried out under in situ temperature conditions (4°C) and the IPCC 2013 Arctic climate change scenario (10°C) after addition of methanogenic and methanotrophic substrates for nearly a year. Trimethylamine (TMA) amendment with warming showed highest maximum CH4 production rates, being 30% higher at 10°C than at 4°C. Maximum methanotrophic rates increased by up to 57% at 10°C compared to 4°C. 16S rRNA gene sequencing indicated high relative abundance of Methanosarcinaceae in TMA amended incubations, and for methanotrophic incubations Methylococcaeae were highly enriched. Anaerobic methanotrophic activity with nitrite and nitrate as electron acceptors was not detected. This study indicates that the methane cycling microbial community can adapt to temperature increases and their activity is highly dependent on substrate availability.
150
































































































   150   151   152   153   154