Page 83 - Development of Functional Scaffolds for Bone Tissue Engineering Using 3D-Bioprinting of Cells and Biomaterials - Yasaman Zamani
P. 83

43. Misch CE, Qu Z, Bidez MW. Mechanical properties of trabecular bone in the human mandible: implications for dental implant treatment planning and surgical placement. J Oral Maxillofac Surg 1999;57:706-708.
44. Puppi D, Morelli A, Bello F, Valentini S, Chiellini F. Additive manufacturing of poly (methyl methacrylate) biomedical implants with dual-scale porosity. Macromol Mater Eng 2018;303:1800247.
45. Amini M, Reisinger A, Pahr DH. Influence of processing parameters on mechanical properties of a 3D- printed trabecular bone microstructure. J Biomed Mater Res B: Appl Biomater 2020;108:38-47.
46. Orman S, Hofstetter C, Aksu A, Reinauer F, Liska R, Baudis S. Toughness enhancers for bone scaffold materials based on biocompatible photopolymers. J Polym Sci A: Polym Chem 2019;57:110-119.
47. Lee JS, Cha HD, Shim JH, Jung JW, Kim JY, Cho DW. Effect of pore architecture and stacking direction
on mechanical properties of solid free form fabrication-based scaffold for bone tissue engineering. J
Biomed Mater Res A 2012;100:1846-1853.
48. Christiyan KGJ, Chandrasekhar U, Venkateswarlu K. A study on the influence of process parameters
on the mechanical properties of 3D printed ABS composite. IOP Conf Series: Mater Sci Eng
2016;114:012109.
49. Aw YY, Yeoh CK, Idris MA, The PL, Hamzah KA, Sazali SA. Effect of printing parameters on tensile,
dynamic mechanical, and thermoelectric properties of FDM 3D printed CABS/ZnO composites.
Materials 2018;11:466.
50. Rabionet M, Polonio E, Guerra AJ, Martin J, Puig T, Ciurana J. Design of a scaffold parameter selection
system with additive manufacturing for a biomedical cell culture. Materials 2018;11:1427.
51. Kwon RY, Meays DR, Meilan AS, Jones J, Miramontes R, Kardos N, Yeh JC, Frangos JA. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to
targeted osteocyte ablation. PLoS One 2012;7:e33336.
52. Wittkowske C, Reilly GC, Lacroix D, Perrault CM. In vitro bone cell models: Impact of fluid shear stress
on bone formation. Front Bioeng Biotechnol. 2016;4:87.
53. Stavenschi E, Corrigan MA, Johnson GP, Riffault M, Hoey DA. Physiological cyclic hydrostatic pressure
induces osteogenic lineage commitment of human bone marrow stem cells: a systematic study. Stem
Cell Res Ther 2018;9:276.
54. Yu W, Qu H, Hu G, Zhang Q, Song K, Guan H, Liu T, Qin J. A microfluidic-based multi-shear device
for investigating the effects of low fluid-induced stresses on osteoblasts. PLoS One 2014;9:e89966.
81










































































   81   82   83   84   85