Page 82 - Clinical relevance of current materials for cranial implants
P. 82

                                80
Chapter 3
25. Yadla, S. et al. Effect of early surgery, material, and method of flap preservation on cranioplasty infections: A systematic review. Neurosurgery 68, 1124–1130 (2011).
26. Piedra, M., Nemecek, A. & Ragel, B. Timing of cranioplasty after decompressive craniectomy for trauma. Surg. Neurol. Int. 5, 25 (2014).
27. Klinger, D. R. et al. Autologous and acrylic cranioplasty: A review of 10 years and 258 cases. World Neurosurg. 82, E525–E530 (2014).
28. Cheng, Y. K. et al. Factors affecting graft infection after cranioplasty. J. Clin. Neurosci. 15, 1115–1119 (2008).
29. Morton, R. P. et al. Predictors of infection after 754 cranioplasty operations and the value of intraoperative
cultures for cryopreserved bone flaps. J. Neurosurg. 125, 766–770 (2016).
30. Brommeland, T., Rydning, P. N., Pripp, A. H. & Helseth, E. Cranioplasty complications and risk factors
associated with bone flap resorption. Scand. J. Trauma. Resusc. Emerg. Med. 23, 1–7 (2015).
31. van de Vijfeijken, S. E. C. M. et al. Autologous bone is inferior to alloplastic cranioplasties Safety of autograft and allograft materials for cranioplasties, a systematic review. World Neurosurg. (2018). doi:10.1016/J. WNEU.2018.05.193
32. Von Elm, E. et al. The Strengthening the Reporting of Observational Studies in Epidemiology (STROBE) statement: Guidelines for reporting observational studies. PLoS Med. 4, 1623–1627 (2007).
33. Vandenbroucke, J. P. et al. Strengthening the Reporting of Observational Studies in Epidemiology (STROBE): Explanation and elaboration. PLoS Med. 4, 1628–1654 (2007).
34. Rocque, B. G., Amancherla, K., Lew, S. M. & Lam, S. Outcomes of cranioplasty following decompressive craniectomy in the pediatric population. J. Neurosurg. Pediatr. 12, 120–125 (2013).
35. Bowers, C. A., Riva-Cambrin, J., Hertzler, D. A. & Walker, M. L. Risk factors and rates of bone flap resorption in pediatric patients after decompressive craniectomy for traumatic brain injury. J. Neurosurg. Pediatr. 11, 526– 532 (2013).
36. Schuss, P. et al. Bone Flap Resorption: Risk Factors for the Development of a Long-Term Complication following Cranioplasty after Decompressive Craniectomy. J. Neurotrauma 30, 91–95 (2013).
37. Fan, M. et al. Cryopreservation of Autologous Cranial Bone Flaps for Cranioplasty: A Large Sample Retrospective Study. World Neurosurg. 109, e853–e859 (2018).
38. Prolo, DJ, Burres KP, McLaughin WT, C. M. Autogenous Skull CRanioplasty: Fresh and Preserved (Frozen), with Consideration of the Cellular Response. Neurosurgery 4, 18–29 (1979).
39. Kehlet, H. Multimodal approach to control postoperative pathophysiology and rehabilitation. Br. J. Anaesth. 78, 606–617 (1997).
40. Lee, J. M. et al. Factors Affecting Optimal Time of Cranioplasty : Brain Sunken Ratio. 13, 113–118 (2017).
41. Piitulainen, J. M. et al. Outcomes of cranioplasty with synthetic materials and autologous bone grafts. World
Neurosurg. 83, 708–714 (2015).
42. Malcolm, J. G. et al. Early Cranioplasty is Associated with Greater Neurological Improvement: A Systematic
Review and Meta-Analysis. Neurosurgery 0, 13–18 (2017).
43. Heyligers, I. C. & Klein-Nulend, J. Detection of living cells in non-processed but deep-frozen bone allografts.
Cell Tissue Bank. 6, 25–31 (2005).
44. Corliss, B. et al. Complications After In Vivo and Ex Vivo Autologous Bone Flap Storage for Cranioplasty: A Comparative Analysis of the Literature. World Neurosurg. 96, 510–515 (2016).








































































   80   81   82   83   84