Page 188 - Clinical relevance of current materials for cranial implants
P. 188

                                186
Chapter 9
REFERENCES
1. Leggat, P.A., D.R. Smith, and U. Kedjarune, Surgical applications of methyl methacrylate: a review of toxicity. Arch Environ Occup Health, 2009. 64(3): p. 207-12.
2. Zanotti, B., et al., Cranioplasty. Journal of Craniofacial Surgery, 2016. 27(8): p. 2061-2072.
3. Hailey, J.L., I.G. Turner, and A.W. Miles, An in vitro study of the effect of environment and storage time on the
fracture properties of bone cement. Clinical Materials, 1994. 16(4): p. 211-216.
4. Yavuz, C., et al., Sterilization of PMMA microfluidic chips by various techniques and investigation of material
characteristics. Journal of Supercritical Fluids, 2016. 107: p. 114-121.
5. Abdo Filho, R.C., et al., Reconstruction of bony facial contour deficiencies with polymethylmethacrylate
implants: case report. J Appl Oral Sci, 2011. 19(4): p. 426-30.
6. Sharavanan, G.M., et al., Cranioplasty using presurgically fabricated presterilised polymethyl methacrylate plate by a simple, cost-effective technique on patients with and without original bone flap: study on 29 patients. J Maxillofac Oral Surg, 2015. 14(2): p. 378-85.
7. Hassan, B., M. Greven, and D. Wismeijer, Integrating 3D facial scanning in a digital workflow to CAD/CAM design and fabricate complete dentures for immediate total mouth rehabilitation. J Adv Prosthodont, 2017. 9(5): p. 381-386.
8. Lewis, G., Properties of acrylic bone cement: state of the art review. J Biomed Mater Res, 1997. 38(2): p. 155-82.
9. Harper, E.J., et al., Influence of sterilization upon a range of properties of experimental bone cements. Journal
of Materials Science: Materials in Medicine, 1997. 8(12): p. 849-853.
10. Lewis, G., Apparent fracture toughness of acrylic bone cement: effect of test specimen configuration and
sterilization method. Biomaterials, 1999. 20(1): p. 69-78.
11. Lewis, G. and S. Mladsi, Effect of sterilization method on properties of PalacosĀ® R acrylic bone cement.
Biomaterials, 1998. 19(1): p. 117-124.
12. Graham, J., et al., Fracture and fatigue properties of acrylic bone cement: the effects of mixing method,
sterilization treatment, and molecular weight. J Arthroplasty, 2000. 15(8): p. 1028-35.
13. Lee, E.H., G.R. Rao, and L.K. Mansur, LET effect on cross-linking and scission mechanisms of PMMA during
irradiation. Radiation Physics and Chemistry, 1999. 55(3): p. 293-305.
14. Standardisation, I.O.f., ISO 20795-1:2013 Dentistry - Base polymers - Part1: Denture base polymers. 2013.
15. Standardisation, I.O.f., ISO 179-1:2010 Plastics - Determination of Charpy impact properties - Part1: Non- instrumented impact test. 2010.
16. Lewis, G., Properties of nanofiller-loaded poly (methyl methacrylate) bone cement composites for orthopedic applications: a review. Journal of Biomedical Materials Research Part B: Applied Biomaterials, 2017. 105(5): p. 1260- 1284.
17. Slane, J., et al., Modification of acrylic bone cement with mesoporous silica nanoparticles: Effects on mechanical, fatigue and absorption properties. Journal of the Mechanical Behavior of Biomedical Materials, 2014. 29(Supplement C): p. 451-461.
18. Lewis, G. and S. Mladsi, Correlation between impact strength and fracture toughness of PMMA-based bone cements. Biomaterials, 2000. 21(8): p. 775-781.
19. Falland-Cheung, L., et al., Investigation of the elastic modulus, tensile and flexural strength of five skull simulant materials for impact testing of a forensic skin/skull/brain model. Journal of the Mechanical Behavior of Biomedical Materials, 2017. 68(Supplement C): p. 303-307.
20. Perkins, W.G., Polymer toughness and impact resistance. Polymer Engineering & Science, 1999. 39(12): p. 2445- 2460.
21. Algers, J., et al., Free volume and mechanical properties of Palacos R bone cement. J Mater Sci Mater Med, 2003. 14(11): p. 955-60.
22. Nottrott, M., et al., Performance of bone cements: are current preclinical specifications adequate? Acta Orthop, 2008. 79(6): p. 826-31.
23. Lucas, A.D., et al., Solvent or thermal extraction of ethylene oxide from polymeric materials: Medical device considerations. J Biomed Mater Res B Appl Biomater, 2017.

































































   186   187   188   189   190