Page 177 - Fluorescence-guided cancer surgery
P. 177

REFERENCES
1. Frangioni JV. In vivo near-infrared  uorescence imaging. Curr Opin Chem Biol 2003;7:626-634.
2. Weissleder R, Pittet MJ. Imaging in the era of molecular oncology. Nature 2008;452:580- 589.
3. Lim MC, Seo SS, Kang S et al. Intraoperative image-guided surgery for ovarian cancer. Quant Imaging Med Surg 2012;2:114-117.
4. Ferlay J, Soerjomataram I, Dikshit R et al. Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 2015;136:E359-E386.
5. Chang SJ, Bristow RE, Ryu HS. Impact of complete cytoreduction leaving no gross residual disease associated with radical cytoreductive surgical procedures on survival in advanced ovarian cancer. Ann Surg Oncol 2012;19:4059-4067.
6. Vergote I, Trope CG, Amant F et al. Neoadjuvant chemotherapy or primary surgery in stage IIIC or IV ovarian cancer. N Engl J Med 2010;363:943-953.
7. Bristow RE, Tomacruz RS, Armstrong DK, Trimble EL, Montz FJ. Survival e ect of maximal cytoreductive surgery for advanced ovarian carcinoma during the platinum era: a meta-analysis. J Clin Oncol 2002;20:1248- 1259.
8. Hoskins WJ, McGuire WP, Brady MF et al. The e ect of diameter of largest residual disease on survival after primary cytoreductive surgery in patients with suboptimal residual epithelial ovarian carcinoma. Am J Obstet Gynecol 1994;170:974-979.
9. Bristow RE, Berek JS. Surgery for ovarian cancer: how to improve survival. Lancet 2006;367:1558-1560.
10. Vahrmeijer AL, Hutteman M, van der Vorst JR, van de Velde CJ, Frangioni JV. Image- guided cancer surgery using near-infrared  uorescence. Nat Rev Clin Oncol 2013;10:507- 518.
11. Frangioni JV. In vivo near-infrared  uorescence imaging. Curr Opin Chem Biol 2003;7:626-634.
12. Chance B. Near-infrared (NIR) optical spectroscopy characterizes breast tissue hormonal and age status. Acad Radiol 2001;8:209-210.
13.
14.
15.
16.
17.
18.
19.
20.
21.
22.
Maeda H, Wu J, Sawa T, Matsumura Y, Hori K. Tumor vascular permeability and the EPR e ect in macromolecular therapeutics: a review. J Control Release 2000;65:271-284.
Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res 1986;46:6387- 6392.
Tummers QR, Hoogstins CE, Peters AA et al. The Value of Intraoperative Near-Infrared Fluorescence Imaging Based on Enhanced Permeability and Retention of Indocyanine Green: Feasibility and False-Positives in Ovarian Cancer. PLoS One 2015;10:e0129766.
O’Shannessy DJ, Somers EB, Smale R, Fu YS. Expression of folate receptor-alpha (FRA) in gynecologic malignancies and its relationship to the tumor type. Int J Gynecol Pathol 2013;32:258-268.
Parker N, Turk MJ, Westrick E, Lewis JD, Low PS, Leamon CP. Folate receptor expression in carcinomas and normal tissues determined by a quantitative radioligand binding assay. Anal Biochem 2005;338:284-293.
Kalli KR, Oberg AL, Keeney GL et al. Folate receptor alpha as a tumor target in epithelial ovarian cancer. Gynecol Oncol 2008;108:619- 626.
Vergote IB, Marth C, Coleman RL. Role of the folate receptor in ovarian cancer treatment: evidence, mechanism, and clinical implications. Cancer Metastasis Rev 2015;34:41-52.
Low PS, Henne WA, Doorneweerd DD. Discovery and development of folic-acid- based receptor targeting for imaging and therapy of cancer and in ammatory diseases. Acc Chem Res 2008;41:120-129.
Crane LM, Arts HJ, van OM et al. The e ect of chemotherapy on expression of folate receptor-alpha in ovarian cancer. Cell Oncol (Dordr ) 2012;35:9-18.
Despierre E, Lambrechts S, Leunen K et al. Folate receptor alpha (FRA) expression remains unchanged in epithelial ovarian and endometrial cancer after chemotherapy. Gynecol Oncol 2013;130:192-199.
Clinical translation of OTL38 in ovarian cancer 175


































































































   175   176   177   178   179