Page 71 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 71

3.7 References
1 S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, et al.,
Electrospun degradable polyesterurethane membranes: potential sca olds for skeletal muscle tissue engineering, Biomaterials, 2005, 26, 4606–4615.
2 W. J. Li, C. T. Laurencin, E. J. Caterson, et al., Electrospun nanofibrous structure: A novel sca old for tissue engineering, J. Biomed. Mater. Res., 2002, 60, 613–621.
3 S. Y. Silva, L. C. Rueda, M. López, et al., Double blind, randomized controlled trial, to evaluate the e ectiveness of a controlled nitric oxide releasing patch versus meglumine antimoniate in the treatment of cutaneous leishmaniasis, Trials, 2006, 7, 14.
4 X. Zong, K. Kim, D. Fang, et al., Structure and process relationship of electrospun bioabsorbable nanofiber membranes, Polymer, 2002, 43, 4403–4412.
5 H. Schreuder-Gibson, P. Gibson, K. Senecal, et al., Protective textile materials based on electrospun nanofibers, J. Adv. Mater., 2002, 34, 44–55.
6 E. R. Kenawy and Y. R. Abdel-Fattah, Antimicrobial properties of modified and electrospun poly(vinyl phenol), Macromol. Biosci., 2002, 2, 261–266.
7 H. Liu and Y. Lo Hsieh, Ultrafine fibrous cellulose membranes from electrospinning of cellulose acetate, J. Polym. Sci. Part B Polym. Phys., 2002, 40, 2119–2129.
8 P. P. Tsai, H. Schreuder-Gibson and P. Gibson, Di erent electrostatic methods for making electret filters, J. Electrostat., 2002, 54, 333–341.
9 D. H. Reneker and I. Chun, Nanometre diameter fibres of polymer, produced by electrospinning, Nanotechnology, 1999, 7, 216–223.
10 H. Fong, I. Chun and D. Reneker, Beaded nanofibers formed during electrospinning, Polymer, 1999, 40, 4585–4592.
11 J. M. Deitzel, J. Kleinmeyer, D. Harris, et al., The e ect of processing variables on the morphology of electrospun nanofibers and textiles, Polymer, 2001, 42, 261–272.
12 M. . Demir, I. Yilgor, E. Yilgor, et al., Electrospinning of polyurethane fibers, Polymer, 2002, 43, 3303–3309.
13 X. M. Mo, C. Y. Xu, M. Kotaki, et al., Electrospun P(LLA-CL) nanofiber: A biomimetic extracellular matrix for smooth muscle cell and endothelial cell proliferation, Biomaterials, 2004, 25, 1883–1890.
14 L. Moroni, R. Licht, J. de Boer, et al., Fiber diameter and texture of electrospun PEOT/PBT sca olds influence human mesenchymal stem cell proliferation and morphology, and the release of incorporated compounds, Biomaterials, 2006, 27, 4911–4922.
15 M. M. Hohman, M. Shin, G. Rutledge, et al., Electrospinning and electrically forced jets. II. Applications, Phys. Fluids, 2001, 13, 2221–2236.
16 Z. Jun, H. Hou, A. Schaper, et al., Poly-L-lactide nanofibers by electrospinning – Influence of solution viscosity and electrical conductivity on fiber diameter and fiber morphology, e-Polymers, 2003, 9, 1–9.
17 S. B. Mitchell and J. E. Sanders, A unique device for controlled electrospinning, J. Biomed. Mater. Res. A, 2006, 78A, 110–120.
18 S. Kidoaki, I. K. Kwon and T. Matsuda, Structural features and 3 mechanical properties of in situ-bonded meshes of segmented
polyurethane electrospun from mixed solvents, J. Biomed. Mater.
Res. Part B Appl. Biomater., 2006, 76, 219–229.
19 G. Schwach and M. Vert, In vitro and in vivo degradation of lactic acid-based interference screws used in cruciate ligament reconstruction, Int. J. Biol. Macromol., 1999, 25, 283–291.
20 K. Kim, M. Yu, X. Zong, et al., Control of degradation rate and hydrophilicity in electrospun non-woven poly(D,L-lactide) nanofiber sca olds for biomedical applications, Biomaterials, 2003, 24, 4977–4985.
21 J. H. Kou, C. Emmett, P. Shen, et al., Bioerosion and biocompatibility of poly(d,l-lactic-co-glycolic acid) implants in brain, J. Control. Release, 1997, 43, 123–130.
22 J. M. Karp, M. S. Shoichet and J. E. Davies, Bone formation on two-dimensional poly(DL-lactide-co-glycolide) (PLGA) films and three-dimensional PLGA tissue engineering sca olds in vitro., J. Biomed. Mater. Res. A, 2003, 64, 388–396.
23 A. Lendlein, M. Colussi, P. Neuenschwander, et al., Hydrolytic Degradation of Phase-Segregated Multiblock Copoly(ester urethane) Containing Weak Links, Macromol. Chem. Phys., 2001, 202, 2702–2711.
24 B. Saad, S. Matter, G. Ciardelli, et al., Interactions of osteoblasts and macrophages with biodegradable and highly porous polyesterurethane foam and its degradation products, J. Biomed. Mater. Res., 1996, 32, 355–366.
25 B. Saad, T. D. Hirt, M. Welti, et al., Development of degradable polyesterurethanes for medical applications:In vitro andin vivo evaluations, J. Biomed. Mater. Res., 1997, 36, 65–74.
26 B. Saad, G. Ciardelli, S. Matter, et al., Degradable and highly porous polyesterurethane foam as biomaterial: e ects and phagocytosis of degradation products in osteoblasts, J.Biomed. Mater.Res., 1998, 39, 594–602.
ULTRA-POROUS 3D POLYMER MESHES BY LOW-TEMPERATURE ELECTROSPINNING
69


































































































   69   70   71   72   73