Page 36 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 36
CHAPTER 1
93 Q. P. Pham, U. Sharma and A. G. Mikos, Electrospun poly (e-caprolactone) microfiber and multilayer nanofiber/microfiber sca olds: Characterization of sca olds and measurement of cellular infiltration, Biomacromolecules, 2006, 7, 2796–2805.
94 A. Holzmeister, M. Rudisile, A. Greiner, et al., Structurally and chemically heterogeneous nanofibrous nonwovens via electrospinning, Eur. Polym. J., 2007, 43, 4859–4867.
95 M. Raspanti, T. Congiu and S. Guizzardi, Structural Aspects of the extracellular matrix of the tendon: An atomic Force and Scanning Electron Microscopy Study, Arch Histol Cytol, 2002, 65, 37–43.
96 Y. F. Li, M. Rubert, H. Aslan, et al., Ultraporous interweaving electrospun microfibers from PCL-PEO binary blends and their inflammatory responses., Nanoscale, 2014, 6, 3392–402.
97 C. L. Pai, M. C. Boyce and G. C. Rutledge, Morphology of Porous and Wrinkled Fibers of Polystyrene Electrospun from Dimethylformamide, Macromolecules, 2009, 42, 2102–2114.
98 S. A. Riboldi, M. Sampaolesi, P. Neuenschwander, et al.,
Electrospun degradable polyesterurethane membranes: potential sca olds for skeletal muscle tissue engineering, Biomaterials, 2005, 26, 4606–4615.
99 W. J. Li, R. L. Mauck, J. A. Cooper, et al., Engineering controllable anisotropy in electrospun biodegradable nanofibrous sca olds for musculoskeletal tissue engineering, J. Biomech., 2007, 40, 1686–1693.
100 A. Buer, S. C. Ugbolue and S. B. Warner, Electrospinning and Properties of Some Nanofibers, Text. Res. J., 2001, 71, 323–328.
101 B. Sundaray, V. Subramanian, T. S. Natarajan, et al., Electrospinning of continuous aligned polymer fibers, Appl. Phys. Lett., 2004, 84, 1222.
102 W. E. Teo and S. Ramakrishna, Nanotechnology, 2006, 17, R89– R106.
103 M. M. L. Arras, C. Grasl, H. Bergmeister, et al., Electrospinning of aligned fibers with adjustable orientation using auxiliary electrodes, Sci. Technol. Adv. Mater., 2012, 13, 35008.
104 A. H. Nurfaizey, J. Stanger, N. Tucker, et al., Control of Spatial Deposition of Electrospun Fiber Using Electric Field Manipulation, J. Eng. Fabr. Fibers, 2014, 9, 155–164.
105 L.LarrondoandR.S.J.Manley,Electrostaticfiberspinningfrom polymer melts. II. Examination of the flow field in an electrically driven jet, J. Polym. Sci. Polym. Phys. Ed., 1981, 19, 921–932.
106 P. D. Dalton, K. Klinkhammer, J. Salber, et al., Direct in vitro electrospinning with polymer melts, Biomacromolecules, 2006, 7, 686–690.
107 G. Hochleitner, T. Jüngst, T. D. Brown, et al., Additive manufacturing of sca olds with sub-micron filaments via melt electrospinning writing., Biofabrication, 2015, 7, 35002.
108 A. Gupta, A. M. Seifalian, Z. Ahmad, et al., Novel Electrohydrodynamic Printing of Nanocomposite Biopolymer Sca olds, J. Bioact. Compat. Polym., 2007, 22, 265–280.
109 C.Hellmann,J.Belardi,R.Dersch,etal.,HighPrecisionDeposition Electrospinning of nanofibers and nanofiber nonwovens, Polymer, 2009, 50, 1197–1205.
110 H.Yuan,Q.Zhou,B.Li,etal.,Directprintingofpatternedthree- dimensional ultrafine fibrous sca olds by stable jet electrospinning for cellular ingrowth, Biofabrication, 2015, 7, 45004.
111 U. Stachewicz, R. J. Bailey, W. Wang, et al., Size dependent mechanical properties of electrospun polymer fibers from a composite structure, Polymer, 2012, 53, 5132–5137.
112 C. M. Hobson, N. J. Amoroso, R. Amini, et al., Fabrication of elastomeric sca olds with curvilinear fibrous structures for heart valve leaflet engineering, J. Biomed. Mater. Res. Part A, 2015, 103, 3101–3106.
113 V. Beachley, E. Katsanevakis, N. Zhang, et al., A novel method to precisely assemble loose nanofiber structures for regenerative medicine applications., Adv. Healthc. Mater., 2013, 2, 343–51.
114 M.I.vanLieshout,C.M.Vaz,M.C.M.Rutten,etal.,Electrospinning versus knitting: two sca olds for tissue engineering of the aortic valve., J. Biomater. Sci. Polym. Ed., 2006, 17, 77–89.
115 S.J.EichhornandW.W.Sampson,Statisticalgeometryofpores and statistics of porous nanofibrous assemblies., J. R. Soc. Interface, 2005, 2, 309–318.
116 Y. Ikada, Challenges in tissue engineering, J. R. Soc. Interface, 2006, 3, 589–601.
117 A.Balguid,A.Mol,M.H.vanMarion,etal.,TailoringFiberDiameter in Electrospun Poly(ε-Caprolactone) Sca olds for Optimal Cellular Infiltration in Cardiovascular Tissue Engineering, Tissue Eng. Part A, 2009, 15, 437–444.
118 E. S. Fioretta, M. Simonet, A. I. P. M. Smits, et al., Di erential Response of Endothelial and Endothelial Colony Forming Cells on Electrospun Sca olds with Distinct Microfiber Diameters, Biomacromolecules, 2014, 15, 821–829.
119 J. Nam, Y. Huang, S. Agarwal, et al., Improved cellular infiltration in electrospun fiber via engineered porosity., Tissue Eng., 2007, 13, 2249–57.
120 M. Simonet, O. D. Schneider, P. Neuenschwander, et al., Ultraporous 3D polymer meshes by low-temperature electrospinning: Use of ice crystals as a removable void template, Polym. Eng. Sci., 2007, 47, 2020–2026.
121 L. Jin, T. Wang, Z. Q. Feng, et al., Fabrication and characterization of a novel flu y polypyrrole fibrous sca old designed for 3D cell culture, J. Mater. Chem., 2012, 22, 18321.
122 B. A. Blakeney, A. Tambralli, J. M. Anderson, et al., Cell infiltration and growth in a low density, uncompressed three-dimensional electrospun nanofibrous sca old, Biomaterials, 2011, 32, 1583–1590.
34