Page 140 - Tailoring Electrospinning Techniques for Regenerative Medicine - Marc Simonet
P. 140
CHAPTER 6
6.8 References
1 S. H. Rahimtoola, Choice of Prosthetic Heart Valve in Adults, J. Am. Coll. Cardiol., 2010, 55, 2413–2426.
2 S. Šušak, L. Velicki and D. Popović, in Calcific Aortic Valve Disease, InTech, 2013.
3 D. Bezuidenhout, D. F. Williams and P. Zilla, Polymeric heart valves for surgical implantation, catheter-based technologies and heart assist devices, Biomaterials, 2015, 36, 6–25.
4 A. Mol, A. I. P. M. Smits, C. V. C. Bouten, et al., Tissue engineering of heart valves: advances and current challenges., Expert Rev. Med. Devices, 2009, 6, 259–275.
5 R. Driessen, in Calcific Aortic Valve Disease, InTech, 2013.
6 B. Dhandayuthapani, Y. Yoshida, T. Maekawa, et al., Polymeric Sca olds in Tissue Engineering Application: A Review, Int. J. Polym. Sci., 2011, 2011, 1–19.
7 Q. P. Pham, U. Sharma and A. G. Mikos, Electrospinning of polymeric nanofibers for tissue engineering applications: a review., Tissue Eng., 2006, 12, 1197–211.
8 W. Liu, S. Thomopoulos and Y. Xia, Electrospun nanofibers for regenerative medicine., Adv. Healthc. Mater., 2012, 1, 10–25.
9 A. Tamayol, M. Akbari, N. Annabi, et al., Fiber-based tissue engineering: Progress, challenges, and opportunities, Biotechnol. Adv., 2013, 31, 669–687.
10 A. Greiner and J. H. Wendor , Electrospinning: a fascinating method for the preparation of ultrathin fibers., Angew. Chem. Int. Ed. Engl., 2007, 46, 5670–703.
11 M. Simonet, N. Stingelin, J. G. F. Wismans, et al., Tailoring the void space and mechanical properties in electrospun sca olds towards physiological ranges, J. Mater. Chem. B, 2014, 2, 305– 313.
12 A. Szentivanyi, T. Chakradeo, H. Zernetsch, et al., Electrospun cellular microenvironments: Understanding controlled release and sca old structure., Adv. Drug Deliv. Rev., 2011, 63, 209–20.
13 M. Simonet, A. Driessen-Mol, F. P. T. Baaijens, et al., Heart valve tissue regeneration - Electrospinning for tissue regeneration, Woodhead Publishing Limited, Cambridge, 1st edn., 2011.
14 C. Del Gaudio, A. Bianco and M. Grigioni, Electrospun bioresorbable trileaflet heart valve prosthesis for tissue engineering: in vitro functional assessment of a pulmonary cardiac valve design., Ann. Ist. Super. Sanita, 2008, 44, 178–86.
15 E. S. Fioretta, J. O. Fledderus, E. A. Burakowska-Meise, et al., Polymer- based sca old designs for in situ vascular tissue engineering: controlling recruitment and di erentiation behavior of endothelial colony forming cells., Macromol. Biosci., 2012, 12, 577–90.
16 A. Cipitria, A. Skelton, T. R. Dargaville, et al., Design, fabrication and characterization of PCL electrospun sca olds—a review, J. Mater. Chem., 2011, 21, 9419–9453.
17 M. I. van Lieshout, C. M. Vaz, M. C. M. Rutten, et al., Electrospinning versus knitting: two sca olds for tissue engineering of the aortic valve., J. Biomater. Sci. Polym. Ed., 2006, 17, 77–89.
18 E. Wisse, A. J. H. Spiering, E. N. M. van Leeuwen, et al., Molecular recognition in poly(epsilon-caprolactone)-based thermoplastic elastomers., Biomacromolecules, 2006, 7, 3385–95.
19 E. Wisse, L. E. Govaert, H. E. H. Meijer, et al., Unusual Tuning of Mechanical Properties of Thermoplastic Elastomers Using Supramolecular Fillers, Macromolecules, 2006, 39, 7425–7432.
20 M. B. Sintzel, A. Merkli, C. Tabatabay, et al., Influence of Irradiation Sterilization on Polymers Used as Drug Carriers—A Review, 2008.
21 G. Larsen, R. Spretz and R. Velarde-Ortiz, Use of coaxial gas jackets to stabilize Taylor cones of volatile solutions and to induce particle-to-fiber transitions, Adv. Mater., 2004, 16, 166–169.
22 M. C. F. Geven, V. N. Bohté, W. H. Aarnoudse, et al., A physiologically representative in vitro model of the coronary circulation., Physiol. Meas., 2004, 25, 891–904.
23 J. Kortsmit, N. J. B. Driessen, M. C. M. Rutten, et al., Real time, non-invasive assessment of leaflet deformation in heart valve tissue engineering, Ann. Biomed. Eng., 2009, 37, 532–541.
24 H. A. Visser, T. C. Bor, M. Wolters, et al., Lifetime Assessment of Load-Bearing Polymer Glasses: The Influence of Physical Ageing, Macromol. Mater. Eng., 2010, 295, 1066–1081.
25 G. B. McKenna and R. W. Penn, Time-dependent failure in poly(methyl methacrylate) and polyethylene, Polymer, 1980, 21, 213–220.
26 S. Khorshidi, A. Solouk, H. Mirzadeh, et al., A review of key challenges of electrospun sca olds for tissue-engineering applications., J. Tissue Eng. Regen. Med., 2015.
27 A. Balguid, A. Mol, M. H. van Marion, et al., Tailoring fiber diameter in electrospun poly(epsilon-caprolactone) sca olds for optimal cellular infiltration in cardiovascular tissue engineering., Tissue Eng., Part A, 2009, 15, 437–444.
28 J. Nam, Y. Huang, S. Agarwal, et al., Improved Cellular Infiltration in Electrospun Fiber via Engineered Porosity, Tissue Eng., 2007, 13, 2249–2257.
29 B. M. Baker, A. O. Gee, R. B. Metter, et al., The potential to improve cell infiltration in composite fiber-aligned electrospun sca olds by the selective removal of sacrificial fibers., Biomaterials, 2008, 29, 2348–58.
138