Page 134 - scheppingen
P. 134
five
132
References
1. ECTS C. Identification and characterization of the tuberous sclerosis gene on chromosome 16. The European Chromosome 16 Tuberous Sclerosis Consortium. Cell. 1993;75(7):1305-15.
2. van Slegtenhorst M, de Hoogt R, Hermans C, et al. Identification of the tuberous sclerosis gene TSC1 on chromosome 9q34. Science. 1997;277(5327):805-8.
3. DiMario FJ, Jr., Sahin M, Ebrahimi-Fakhari D. Tuberous sclerosis complex. Pediatr Clin North Am. 2015 Jun;62(3):633-48.
4. Orlova KA, Crino PB. The tuberous sclerosis complex. Annals of the New York Academy of Sciences. 2010 Jan;1184:87-105.
5. Bockaert J, Marin P. mTOR in Brain Physiology and Pathologies. Physiol Rev. 2015 Oct;95(4):1157-87.
6. Schmitz F, Heit A, Dreher S, et al. Mammalian target of rapamycin (mTOR) orchestrates the
defense program of innate immune cells. European Journal of Immunology. 2008;38(11):2981-92.
7. Lim HK, Choi YA, Park W, et al. Phosphatidic acid regulates systemic inflammatory responses by modulating the Akt-mammalian target of rapamycin-p70 S6 kinase 1 pathway. Journal of Biological
Chemistry. 2003;278(46):45117-27.
8. Weichhart T, Saemann MD. The multiple facets of mTOR in immunity. Trends in Immunology.
2009;30(5):218-26.
9. Soliman GA. The role of mechanistic target of rapamycin (mTOR) complexes signaling in the
immune responses. Nutrients. 2013 Jun;5(6):2231-57.
10. Curatolo P, Moavero R, de Vries PJ. Neurological and neuropsychiatric aspects of tuberous sclero-
sis complex. Lancet Neurol. 2015 Jul;14(7):733-45.
11. Mizuguchi M, Takashima S. Neuropathology of tuberous sclerosis. Brain & development.
2001;23(7):508-15.
12. DiMario FJ, Jr. Brain abnormalities in tuberous sclerosis complex. Journal of child neurology.
2004;19(9):650-7.
13. Aronica E, Becker AJ, Spreafico R. Malformations of cortical development. Brain pathology. 2012
May;22(3):380-401.
14. Aronica E, Crino PB. Epilepsy Related to Developmental Tumors and Malformations of Cortical
Development. Neurotherapeutics : the journal of the American Society for Experimental
NeuroTherapeutics. 2014 Jan 31.
15. Boer K, Jansen F, Nellist M, et al. Inflammatory processes in cortical tubers and subependymal
giant cell tumors of tuberous sclerosis complex. Epilepsy research. 2008 Jan;78(1):7-21.
16. Boer K, Crino PB, Gorter JA, et al. Gene expression analysis of tuberous sclerosis complex cortical tubers reveals increased expression of adhesion and inflammatory factors. Brain Pathol. 2010
Jul;20(4):704-19.
17. Prabowo AS, Anink JJ, Lammens M, et al. Fetal brain lesions in tuberous sclerosis complex: TORC1
activation and inflammation. Brain pathology. 2013 Jan;23(1):45-59.
18. Zurolo E, Iyer A, Maroso M, et al. Activation of toll-like receptor, RAGE and HMGB1 signalling in
malformations of cortical development. Brain. 2011 Apr;134(Pt 4):1015-32.
19. Zhang B, Zou J, Rensing NR, Yang M, Wong M. Inflammatory mechanisms contribute to the neuro- logical manifestations of tuberous sclerosis complex. Neurobiology of disease. 2015 Aug;80:70-9.
20. Sethi P, Lukiw WJ. Micro-RNA abundance and stability in human brain: specific alterations in
Alzheimer’s disease temporal lobe neocortex. Neuroscience Letters. 2009;459(2):100-4.
21. Li L, Chen XP, Li YJ. MicroRNA-146a and human disease. Scandinavian Journal of Immunology.
2010;71(4):227-31.
22. Ha TY. MicroRNAs in Human Diseases: From Cancer to Cardiovascular Disease. Immune Netw.
2011 Jun;11(3):135-54.
23. Rao P, Benito E, Fischer A. MicroRNAs as biomarkers for CNS disease. Front Mol Neurosci.
2013;6:39.
24. Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol
Neurosci. 2013;6:37.
25. Li MM, Li XM, Zheng XP, Yu JT, Tan L. MicroRNAs dysregulation in epilepsy. Brain Res. 2014 Oct
10;1584:94-104.
26. Quinn SR, O’Neill LA. A trio of microRNAs that control Toll-like receptor signalling. Int Immunol.