Page 104 - scheppingen
P. 104

 four
102
50. Basler M, Kirk CJ, Groettrup M. The immunoproteasome in antigen processing and other immu- nological functions. Curr Opin Immunol. 2013 Feb;25(1):74-80.
51. Warnatsch A, Bergann T, Kruger E. Oxidation matters: the ubiquitin proteasome system con- nects innate immune mechanisms with MHC class I antigen presentation. Mol Immunol. 2013 Sep;55(2):106-9.
52. Maldonado M, Kapphahn RJ, Terluk MR, et al. Immunoproteasome deficiency modifies the alter- native pathway of NFkappaB signaling. PloS one. 2013;8(2):e56187.
53. Pintado C, Gavilan MP, Gavilan E, et al. Lipopolysaccharide-induced neuroinflammation leads to the accumulation of ubiquitinated proteins and increases susceptibility to neurodegeneration induced by proteasome inhibition in rat hippocampus. J Neuroinflammation. 2012;9:87.
54. Prabowo AS, Iyer AM, Anink JJ, Spliet WG, van Rijen PC, Aronica E. Differential expression of major histocompatibility complex class I in developmental glioneuronal lesions. Journal of neuroinflam- mation. 2013;10:12.
55. Lim HK, Choi YA, Park W, et al. Phosphatidic acid regulates systemic inflammatory responses by modulating the Akt-mammalian target of rapamycin-p70 S6 kinase 1 pathway. Journal of Biological Chemistry. 2003;278(46):45117-27.
56. Schmitz F, Heit A, Dreher S, et al. Mammalian target of rapamycin (mTOR) orchestrates the defense program of innate immune cells. European Journal of Immunology. 2008;38(11):2981-92.
57. Weichhart T, Saemann MD. The multiple facets of mTOR in immunity. Trends in Immunology. 2009;30(5):218-26.
58. Bejarano E, Rodriguez-Navarro JA. Autophagy and amino acid metabolism in the brain: implica- tions for epilepsy. Amino Acids. 2015 Oct;47(10):2113-26.
59. Bockaert J, Marin P. mTOR in Brain Physiology and Pathologies. Physiol Rev. 2015 Oct;95(4):1157-87.
60. Yasin SA, Ali AM, Tata M, et al. mTOR-dependent abnormalities in autophagy characterize human malformations of cortical development: evidence from focal cortical dysplasia and tuberous scle-
rosis. Acta neuropathologica. 2013 Aug;126(2):207-18.
61. Lilienbaum A. Relationship between the proteasomal system and autophagy. Int J Biochem Mol
Biol. 2013;4(1):1-26.
62. Zhang HM, Fu J, Hamilton R, Diaz V, Zhang Y. The mammalian target of rapamycin modulates the
immunoproteasome system in the heart. J Mol Cell Cardiol. 2015 Sep;86:158-67.
63. van Vliet EA, Forte G, Holtman L, et al. Inhibition of mammalian target of rapamycin reduces epileptogenesis and blood-brain barrier leakage but not microglia activation. Epilepsia. 2012
Jul;53(7):1254-63.
64. Muchamuel T, Basler M, Aujay MA, et al. A selective inhibitor of the immunoproteasome subunit
LMP7 blocks cytokine production and attenuates progression of experimental arthritis. Nat Med.
2009 Jul;15(7):781-7.
65. Dou QP, Zonder JA. Overview of proteasome inhibitor-based anti-cancer therapies: perspective
on bortezomib and second generation proteasome inhibitors versus future generation inhibitors
of ubiquitin-proteasome system. Current cancer drug targets. 2014;14(6):517-36.
66. Miller Z, Ao L, Kim KB, Lee W. Inhibitors of the immunoproteasome: current status and future
directions. Curr Pharm Des. 2013;19(22):4140-51.
67. Miller Z, Lee W, Kim KB. The immunoproteasome as a therapeutic target for hematological malig-
nancies. Current cancer drug targets. 2014;14(6):537-48.
68. Basler M, Mundt S, Bitzer A, Schmidt C, Groettrup M. The immunoproteasome: a novel drug target
for autoimmune diseases. Clin Exp Rheumatol. 2015 Jul-Aug;33(4 Suppl 92):S74-9.
69. Bellavista E, Santoro A, Galimberti D, Comi C, Luciani F, Mishto M. Current understanding on the role of standard and immunoproteasomes in inflammatory/immunological pathways of multiple
sclerosis. Autoimmune Dis. 2014;2014:739705.
70. Ferrington DA, Hussong SA, Roehrich H, et al. Immunoproteasome responds to injury in the retina
and brain. J Neurochem. 2008 Jul;106(1):158-69.
71. Seifert U, Bialy LP, Ebstein F, et al. Immunoproteasomes preserve protein homeostasis upon inter-
feron-induced oxidative stress. Cell. 2010 Aug 20;142(4):613-24.
72. Malik AR, Liszewska E, Skalecka A, et al. Tuberous sclerosis complex neuropathology requires glu-
tamate-cysteine ligase. Acta Neuropathol Commun. 2015;3:48.
73. Iyer A, Prabowo A, Anink J, Spliet WG, van Rijen PC, Aronica E. Cell injury and Premature


























































   102   103   104   105   106