Page 90 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 90
CHAPTER 5
[13] Z. Yao, Y. Jiang, F. Jia, Z. Jiang, F. Wang, Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti--6Al--4V alloy, Appl. Surf. Sci. 254 (2008) 4084–4091.
[14] J.A. Curran, T.W. Clyne, Porosity in plasma electrolytic oxide coatings, Acta Mater. 54 (2006) 1985–1993.
[15] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coat- ings Technol. 122 (1999) 73–93.
[16] B. V. Vladimirov, B.L. Krit, V.B. Lyudin, N. V. Morozova, a. D. Rossiiskaya, I. V. Suminov, a. V. Epel’feld, Microarc oxida- tion of magnesium alloys: A review, Surf. Eng. Appl. Electrochem. 50 (2014) 195–232. doi:10.3103/S1068375514030090.
[17] C. Liu, Y. Zhao, Y. Chen, P. Liu, K. Cai, Surface modification of magnesium alloy via cathodic plasma electrolysis and its influence on corrosion resistance and cytocompatibility, Mater. Lett. 132 (2014) 15–18. doi:10.1016/j.matlet.2014.06.019. [18] J. Yang, F. Cui, I.S. Lee, Surface modifications of magnesium alloys for biomedical applications., Ann. Biomed. Eng. 39 (2011) 1857–71. doi:10.1007/s10439-011-0300-y.
[19] T. Ito, M. Kato, K. Toi, T. Shirakawa, I. Ikemoto, T. Tokuda, Oxygen species adsorbed on ultraviolet-irradiated magne- sium oxide, J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condens. Phases. 81 (1985) 2835–2844.
[20] W. Att, M. Takeuchi, T. Suzuki, K. Kubo, M. Anpo, T. Ogawa, Enhanced osteoblast function on ultraviolet light-treated zirconia, Biomaterials. 30 (2009) 1273–1280.
[21] W. Luo, A. Chen, M. Chen, W. Dong, X. Hou, Comparison of sterilization efficiency of pulsed and continuous UV light using tunable frequency UV system, Innov. Food Sci. Emerg. Technol. 26 (2014) 220–225.
[22] P.J. Vezeau, G.F. Koorbusch, R.A. Draughn, J.C. Keller, Effects of multiple sterilization on surface characteristics and in vitro biologic responses to titanium, J. Oral Maxillofac. Surg. 54 (1996) 738–746.
[23] A. Han, J.K.H. Tsoi, J.P. Matinlinna, Y. Zhang, Z. Chen, Effects of different sterilization methods on surface character- istics and biofilm formation on zirconia in vitro, Dent. Mater. 34 (2018) 272–281.
[24] S.A. Salman, M. Okido, Anodization of magnesium (Mg) alloys to improve corrosion resistance, in: Corros. Prev. Magnes. Alloy., Elsevier, 2013: pp. 197–231.[25] N.P. Tipnis, D.J. Burgess, Sterilization of implantable polymer-based medical devices: A review, Int. J. Pharm. (2017).
[26] V.G. Alder, A.M. Brown, W.A. Gillespie, Disinfection of heat-sensitive material by low-temperature steam and form- aldehyde, J. Clin. Pathol. 19 (1966) 83–89.
[27] K. Kanemitsu, T. Imasaka, S. Ishikawa, H. Kunishima, H. Harigae, K. Ueno, H. Takemura, Y. Hirayama, M. Kaku, A comparative study of ethylene oxide gas, hydrogen peroxide gas plasma, and low-temperature steam formaldehyde steriliza- tion, Infect. Control Hosp. Epidemiol. 26 (2005) 486–489.
[28] S.J. Line, J.K. Pickerill, Testing a steam-formaldehyde sterilizer for gas penetration efficiency, J. Clin. Pathol. 26 (1973) 716–720.
[29] S. Hiromoto, A. Yamamoto, Control of degradation rate of bioabsorbable magnesium by anodization and steam treatment, Mater. Sci. Eng. C. 30 (2010) 1085–1093. doi:10.1016/j.msec.2010.06.001.
[30] J.H. Park, R. Olivares-Navarrete, R.E. Baier, A.E. Meyer, R. Tannenbaum, B.D. Boyan, Z. Schwartz, Effect of cleaning and sterilization on titanium implant surface properties and cellular response, Acta Biomater. 8 (2012) 1966–1975.
[31] M. Pegueroles, F.J. Gil, J.A. Planell, C. Aparicio, The influence of blasting and sterilization on static and time-related wettability and surface-energy properties of titanium surfaces, Surf. Coatings Technol. 202 (2008) 3470–3479.
88