Page 79 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 79
IMPROVEMENT OF CORROSION RESISTANCE OF COMMERCIAL PURE MAGNESIUM AFTER ITS MODIFICATION BY SINGLE AND TWO-STEP ANODIZATION
[10] W.K. Yeung, G.C. Reilly, A. Matthews, A. Yerokhin, In vitro biological response of plasma electrolytically oxidized and plas- ma-sprayed hydroxyapatite coatings on Ti – 6Al – 4V alloy, (2013) 939–949. doi:10.1002/jbm.b.32899.
[11] R.-C. Zeng, Y. Hu, S.-K. Guan, H.-Z. Cui, E.-H. Han, Corrosion of magnesium alloy AZ31: The influence of bicarbonate, sul- phate, hydrogen phosphate and dihydrogen phosphate ions in saline solution, Corros. Sci. 86 (2014) 171–182. doi:10.1016/j. corsci.2014.05.006.
[12] D. Chen, J. Wu, Y. Liang, S. Ye, W. Li, Preparation of cerium oxide based environment-friendly chemical conversion coating on magnesium alloy with additives, Trans. Nonferrous Met. Soc. China. 21 (2011) 1905–1910. doi:10.1016/s1003-6326(11)60948-5. [13] Y. Gao, A. Yerokhin, A. Matthews, Applied Surface Science Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings, Appl. Surf. Sci. 316 (2014) 558–567. doi:10.1016/j.apsusc.2014.08.035.
[14] R.F. Zhang, S.F. Zhang, Y.L. Shen, L.H. Zhang, T.Z. Liu, Y.Q. Zhang, S.B. Guo, Applied Surface Science Influence of sodium
borate concentration on properties of anodic coatings obtained by micro arc oxidation on magnesium alloys, Appl. Surf. Sci. 258
(2012) 6602–6610. doi:10.1016/j.apsusc.2012.03.088. 4 [15] L.I.U. Yan, Y. Fu-wei, W.E.I. Zhong-ling, Z. Zhao, Anodizing of AZ91D magnesium alloy using environmental friendly alkaline borate-biphthalate electrolyte, Trans. Nonferrous Met. Soc. China. 22 (2012) 1778–1785. doi:10.1016/S1003-6326(11)61387-3.
[16] Y. Liu, Z. Wei, F. Yang, Z. Zhang, Environmental friendly anodizing of AZ91D magnesium alloy in alkaline borate – benzoate
electrolyte, J. Alloys Compd. 509 (2011) 6440–6446. doi:10.1016/j.jallcom.2011.03.083.
[17] B.L. Jiang, Y.F. Ge, Micro-arc oxidation (MAO) to improve the corrosion resistance of magnesium (Mg) alloys, in: Corros. Prev.
Magnes. Alloy., Elsevier, 2013: pp. 163–196.
[18] S. Stojadinović, R. Vasilić, M. Petković, B. Kasalica, I. Belča, a. Žekić, L. Zeković, Characterization of the plasma electrolytic
oxidation of titanium in sodium metasilicate, Appl. Surf. Sci. 265 (2013) 226–233. doi:10.1016/j.apsusc.2012.10.183.
[19] O.A. Galvis, D. Quintero, J.G. Castaño, H. Liu, G.E. Thompson, P. Skeldon, F. Echeverría, Formation of grooved and porous coat-
ings on titanium by plasma electrolytic oxidation in H 2 SO 4/H 3 PO 4 electrolytes and effects of coating morphology on adhesive
bonding, Surf. Coatings Technol. 269 (2015) 238–249.
[20] Z. Yao, Y. Jiang, F. Jia, Z. Jiang, F. Wang, Growth characteristics of plasma electrolytic oxidation ceramic coatings on Ti--6Al-
-4V alloy, Appl. Surf. Sci. 254 (2008) 4084–4091.
[21] Y. Jang, Z. Tan, C. Jurey, B. Collins, A. Badve, Z. Dong, C. Park, C.S. Kim, J. Sankar, Y. Yun, Systematic understanding of corro-
sion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant.,
Mater. Sci. Eng. C. Mater. Biol. Appl. 45 (2014) 45–55. doi:10.1016/j.msec.2014.08.052.
[22] H. Dong, Surface engineering of light alloys: aluminium, magnesium and titanium alloys, Elsevier, 2010.
[23] T.L. Nguyen, A. Blanquet, M.P. Staiger, G.J. Dias, T.B.F. Woodfield, On the role of surface roughness in the corrosion of pure
magnesium in vitro, J. Biomed. Mater. Res. Part B Appl. Biomater. 100 (2012) 1310–1318.
[24] Y. Zhang, F. Feyerabend, S. Tang, J. Hu, X. Lu, C. Blawert, T. Lin, A study of degradation resistance and cytocompatibility of super-hydrophobic coating on magnesium, Mater. Sci. Eng. C. 78 (2017) 405–412.
[25] X. Zhang, Q. Ma, Y. Dai, F. Hu, G. Liu, Z. Xu, G. Wei, T. Xu, Q. Zeng, W. Xie, Effects of surface treatments and bonding types on
the interfacial behavior of fiber metal laminate based on magnesium alloy, Appl. Surf. Sci. 427 (2018) 897–906.
[26] S. Fajardo, G.S. Frankel, Effect of impurities on the enhanced catalytic activity for hydrogen evolution in high purity magne-
sium, Electrochim. Acta. 165 (2015) 255–267.
[27] G.S. Frankel, A. Samaniego, N. Birbilis, Evolution of hydrogen at dissolving magnesium surfaces, Corros. Sci. 70 (2013)
104–111.
[28] D.C. Hansen, Metal corrosion in the human body: the ultimate bio-corrosion scenario, Electrochem. Soc. Interface. 17 (2008)
31.
[29] D. Xue, Y. Yun, M.J. Schulz, V. Shanov, Corrosion protection of biodegradable magnesium implants using anodization, Mater.
Sci. Eng. C. 31 (2011) 215–223.
[30] L. Zhao, C. Cui, Q. Wang, S. Bu, Growth characteristics and corrosion resistance of micro-arc oxidation coating on pure mag-
nesium for biomedical applications, Corros. Sci. 52 (2010) 2228–2234.
77