Page 59 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 59

NOVEL COATINGS FOR COMMERCIAL PURE MAGNESIUM OBTAINED BY PLASMA ELECTROLYTIC OXIDATION THROUGH THE ADDITION OF ORGANIC ADDITIVES
breakdown voltage and the density and intensity of the sparks decreased, all these effects contribute to the compact characteristic of the anodic film obtained. Oppositely, by the addition of hexamethylenetetramine and mannitol, porous surfaces were obtained in a process high influenced by the gas evolution on the interface coating-electrolyte. - In general, at higher voltage/current applied, higher size porous (for NAF and MAN) and higher thickens of the coatings. Uniformity and thickness of the coatings depends directly of the charge applied and the mode operation. - Potentiostaic mode showed better results in terms of homogeneity and distribution of porous because in this pro- cesses a lower charge was used in comparison with galvanostatic mode.
- PEO is a simples, low cost and reproducible technique that allow the surface modification of Mg in which nontoxic and environmental friendly solutions are used. This is a good option to be used for modification of implants in bio- medical fields.
References
[1] M. Niinomi, M. Nakai, J. Hieda, Development of new metallic alloys for biomedical applications., Acta Biomater. 8 (2012) 3888–903. doi:10.1016/j.actbio.2012.06.037.
[2] G.S. Cole, Issues that influence magnesium’s use in the automotive industry, in: Mater. Sci. Forum, 2003: pp. 43–50.
[3] M.K. Kulekci, Magnesium and its alloys applications in automotive industry, Int. J. Adv. Manuf. Technol. 39 (2008) 851–865. [4] L. He, P. Li, The Developing Technology and Condition of Magnesium Industry, Foundry Technol. 24 (2003) 161–162.
[5] S.E. Henderson, K. Verdelis, S. Maiti, S. Pal, W.L. Chung, D.-T. Chou, P.N. Kumta, A.J. Almarza, Magnesium alloys as a biomate- rial for degradable craniofacial screws., Acta Biomater. 10 (2014) 2323–32. doi:10.1016/j.actbio.2013.12.040.
[6] A. Chaya, S. Yoshizawa, K. Verdelis, N. Myers, B.J. Costello, D.-T. Chou, S. Pal, S. Maiti, P.N. Kumta, C. Sfeir, In vivo study of magnesium plate and screw degradation and bone fracture healing, Acta Biomater. 18 (2015) 262–269.
[7] W.R. Zhou, Y.F. Zheng, M. a Leeflang, J. Zhou, Mechanical property, biocorrosion and in vitro biocompatibility evaluations of Mg-Li-(Al)-(RE) alloys for future cardiovascular stent application., Acta Biomater. 9 (2013) 8488–98. doi:10.1016/j.act- bio.2013.01.032.
[8] J. Kuhlmann, I. Bartsch, E. Willbold, S. Schuchardt, O. Holz, N. Hort, D. Höche, W.R. Heineman, F. Witte, Fast escape of hydro- gen from gas cavities around corroding magnesium implants, Acta Biomater. 9 (2013) 8714–8721.
[9] K.W. Guo, A review of magnesium/magnesium alloys corrosion and its protection, Recent Pat. Corros. Sci. 2 (2010) 13–21. [10] H. Hornberger, S. Virtanen, a R. Boccaccini, Biomedical coatings on magnesium alloys - a review., Acta Biomater. 8 (2012) 2442–55. doi:10.1016/j.actbio.2012.04.012.
[11] Y. Jang, Z. Tan, C. Jurey, B. Collins, A. Badve, Z. Dong, C. Park, C.S. Kim, J. Sankar, Y. Yun, Systematic understanding of corro- sion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcutaneous implant., Mater. Sci. Eng. C. Mater. Biol. Appl. 45 (2014) 45–55. doi:10.1016/j.msec.2014.08.052.
[12] Y. Gao, A. Yerokhin, A. Matthews, Applied Surface Science Effect of current mode on PEO treatment of magnesium in Ca- and P-containing electrolyte and resulting coatings, Appl. Surf. Sci. 316 (2014) 558–567. doi:10.1016/j.apsusc.2014.08.035.
[13] R. Arrabal, E. Matykina, F. Viejo, P. Skeldon, G.E. Thompson, Corrosion resistance of WE43 and AZ91D magnesium alloys with phosphate PEO coatings, 50 (2008) 1744–1752. doi:10.1016/j.corsci.2008.03.002.
[14] A.L. Yerokhin, X. Nie, A. Leyland, A. Matthews, S.J. Dowey, Plasma electrolysis for surface engineering, Surf. Coatings Technol. 122 (1999) 73–93.
[15] L. Chai, X. Yu, Z. Yang, Y. Wang, M. Okido, Anodizing of magnesium alloy AZ31 in alkaline solutions with silicate under continuous sparking, Corros. Sci. 50 (2008) 3274–3279. doi:10.1016/j.corsci.2008.08.038.
[16] S. Hiromoto, T. Shishido, A. Yamamoto, N. Maruyama, H. Somekawa, T. Mukai, Precipitation control of calcium phosphate on pure magnesium by anodization, Corros. Sci. 50 (2008) 2906–2913. doi:10.1016/j.corsci.2008.08.013. [17] T.F. Barton, J.A. Macculloch, P.N. Ross, Anodization of magnesium and magnesium based alloys, (2001).
[18] M. Nakajima, Y. Miura, K. Fushimi, H. Habazaki, Spark anodizing behaviour of titanium and its alloys in alkaline aluminate electrolyte, Corros. Sci. 51 (2009) 1534–1539.
3
   57














































































   57   58   59   60   61