Page 33 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 33

BIODEGRADABLE MAGNESIUM-BASED SUPPORTS FOR THERAPY OF VASCULAR DISEASE A GENERAL VIEW
 [13] M. Bornapour, N. Muja, D. Shum-Tim, M. Cerruti, M. Pekguleryuz, Biocompatibility and biodegradability of Mg-Sr alloys: the
formation of Sr-substituted hydroxyapatite., Acta Biomater. 9 (2013) 5319–30. doi:10.1016/j.actbio.2012.07.045.
[14] V. Beachley, X. Wen, Polymer nanofibrous structures: Fabrication, biofunctionalization, and cell interactions., Prog. Polym.
Sci. 35 (2010) 868–892. doi:10.1016/j.progpolymsci.2010.03.003. 2 [15] A.M. Sammel, D. Chen, N. Jepson, New generation coronary stent technology--is the future biodegradable?, Heart. Lung
Circ. 22 (2013) 495–506. doi:10.1016/j.hlc.2013.02.008.
[16] Q. Feng, W. Jiang, K. Sun, K. Sun, S. Chen, L. Zhao, K. Dai, N. Ma, Mechanical properties and in vivo performance of a novel sliding-lock bioabsorbable poly-p-dioxanone stent., J. Mater. Sci. Mater. Med. 22 (2011) 2319–27. doi:10.1007/s10856-011-4407- 3.
[17] P. Radke, Outcome after treatment of coronary in-stent restenosis Results from a systematic review using meta-analysis techniques, Eur. Heart J. 24 (2003) 266–273. doi:10.1016/S0195-668X(02)00202-6.
[18] S. Cassese, R. a Byrne, T. Tada, S. Pinieck, M. Joner, T. Ibrahim, L. a King, M. Fusaro, K.-L. Laugwitz, A. Kastrati, Incidence and predictors of restenosis after coronary stenting in 10 004 patients with surveillance angiography., Heart. 100 (2014) 153–9. doi:10.1136/hear tjnl-2013-304933.
[19] J.B. Elmore, E. Mehanna, S.A. Parikh, D.A. Zidar, Restenosis of the Coronary Arteries: Past, Present, Future Directions, Interv. Cardiol. Clin. 5 (2016) 281–293.
[20] D. Echeverri, Efectos biol{ó}gicos de los stents medicados en la circulaci{ó}n coronari, Rev. Colomb. Cardiol. 17 (2010) 47–55. [21] D.M. Martin, F.J. Boyle, Drug-eluting stents for coronary artery disease: a review., Med. Eng. Phys. 33 (2011) 148–63. doi:10.1016/j.medengphy.2010.10.009.
[22] R.A. Partida, R.W. Yeh, Contemporary Drug-Eluting Stent Platforms: Design, Safety, and Clinical Efficacy, Interv. Cardiol. Clin. 5 (2016) 331–347.
[23] I. Akin, H. Schneider, H. Ince, S. Kische, T.C. Rehders, T. Chatterjee, C. a Nienaber, Second- and third-generation drug-eluting coronary stents: progress and safety., Herz. 36 (2011) 190–6. doi:10.1007/s00059-011-3458-z.
[24] P. Lu, H. Fan, Y. Liu, L. Cao, X. Wu, X. Xu, Controllable biodegradability, drug release behavior and hemocompatibility of PTX- eluting magnesium stents., Colloids Surf. B. Biointerfaces. 83 (2011) 23–8. doi:10.1016/j.colsurfb.2010.10.038.
[25] J. Foerst, M. Vorpahl, M. Engelhardt, T. Koehler, K. Tiroch, R. Wessely, Evolution of Coronary Stents: From Bare-Metal Stents to Fully Biodegradable, Drug-Eluting Stents, Comb. Prod. Ther. 3 (2013) 9–24. doi:10.1007/s13556-013-0005-7.
[26] S. Ramcharitar, P.W. Serruys, Fully biodegradable coronary stents : progress to date., Am. J. Cardiovasc. Drugs. 8 (2008) 305–14.
[27] H. Hermawan, Biodegradable Metals, (2012). doi:10.1007/978-3-642-31170-3.
[28] S. Pant, G. Limbert, N.P. Curzen, N.W. Bressloff, Multiobjective design optimisation of coronary stents., Biomaterials. 32 (2011) 7755–73. doi:10.1016/j.biomaterials.2011.07.059.
[29] M.J. Lipinski, R.O. Escarcega, T. Lhermusier, R. Waksman, The effects of novel, bioresorbable scaffolds on coronary vascular pathophysiology., J. Cardiovasc. Transl. Res. 7 (2014) 413–25. doi:10.1007/s12265-014-9571-7.
[30] Z. Zhen, X. Liu, T. Huang, T. Xi, Y. Zheng, Hemolysis and cytotoxicity mechanisms of biodegradable magnesium and its alloys., Mater. Sci. Eng. C. Mater. Biol. Appl. 46 (2015) 202–6. doi:10.1016/j.msec.2014.08.038.
[31] K. Katsanos, P. Kitrou, S. Spiliopoulos, A. Diamantopoulos, D. Karnabatidis, Comparative effectiveness of plain balloon an- gioplasty, bare metal stents, drug-coated balloons, and drug-eluting stents for the treatment of infrapopliteal artery disease: Systematic review and Bayesian network meta-analysis of randomized controlled tria, J. Endovasc. Ther. 23 (2016) 851–863. [32] M. Haude, H. Ince, A. Abizaid, R. Toelg, P.A. Lemos, C. von Birgelen, E.H. Christiansen, W. Wijns, F.-J. Neumann, C. Kaiser, othrs, Safety and performance of the second-generation drug-eluting absorbable metal scaffold in patients with de-novo coro- nary artery lesions (BIOSOLVE-II): 6 month results of a prospective, multicentre, non-randomised, first-in-man trial, Lancet. 387 (2016) 31–39.
[33] G.W. Stone, R. Gao, T. Kimura, D.J. Kereiakes, S.G. Ellis, Y. Onuma, W.-F. Cheong, J. Jones-McMeans, X. Su, Z. Zhang, others, 1-year outcomes with the Absorb bioresorbable scaffold in patients with coronary artery disease: a patient-level, pooled meta- analysis, Lancet. 387 (2016) 1277–1289.
  31












































































   31   32   33   34   35