Page 125 - Magnesium-based supports for stem cell therapy of vascular disease - Mónica Echeverry Rendón
P. 125
ENDOTHELIAL FUNCTION AFTER EXPOSITION OF MAGNESIUM DEGRADATION PRODUCTS
[1] L.G. Griffith, G. Naughton, Tissue engineering--current challenges and expanding opportunities, Science (80-. ). 295 (2002) 1009–1014.
[2] R.C. Thomson, M.C. Wake, M.J. Yaszemski, A.G. Mikos, Biodegradable polymer scaffolds to regenerate organs, in: Biopolym. Ii, Springer, 1995: pp. 245–274.
[3] A.M. Sammel, D. Chen, N. Jepson, New generation coronary stent technology--is the future biodegradable?, Heart. Lung Circ. 22 (2013) 495–506. doi:10.1016/j.hlc.2013.02.008.
[4] P.K. Bowen, J. Drelich, J. Goldman, A new in vitro-in vivo correlation for bioabsorbable magnesium stents from mechanical behavior., Mater. Sci. Eng. C. Mater. Biol. Appl. 33 (2013) 5064–70. doi:10.1016/j.msec.2013.08.042.
[5] J.A. Grogan, S.B. Leen, P.E. Mchugh, Acta Biomaterialia A physical corrosion model for bioabsorbable metal stents, 10 (2014) 2313–2322.
[6] P. Divya, N. Rama, S. Prashanth, N. Senthil Kumar, J. Vidya Sagar, Bioabsorbable stents – Has the concept re- ally translated to clinical benefits? – Concept to clinical – Update: 2012, J. Indian Coll. Cardiol. 2 (2012) 156–159. doi:10.1016/j.jicc.2012.09.005.
[7] X.-N. Gu, Y.-F. Zheng, A review on magnesium alloys as biodegradable materials, Front. Mater. Sci. China. 4 (2010) 111–115. doi:10.1007/s11706-010-0024-1.
[8] S. Long, A.M.P. Romani, Role of cellular magnesium in human diseases, Austin J. Nutr. Food Sci. 2 (2014).
[9] B.I.I.I.F.T. In, Element Concentrations Toxic to Plants , Animals , and Man, (n.d.).
[10] W. Jahnen-Dechent, M. Ketteler, Magnesium basics, Clin. Kidney J. 5 (2012) i3--i14.
[11] W.D. Müller, M.L. Nascimento, M. Zeddies, M. Córsico, L.M. Gassa, M.A.F.L. de Mele, Magnesium and its alloys as degradable biomaterials: corrosion studies using potentiodynamic and EIS electrochemical techniques, Mater. Res. 10 (2007) 5–10.
[12] G.S. Frankel, A. Samaniego, N. Birbilis, Evolution of hydrogen at dissolving magnesium surfaces, Corros. Sci. 70 (2013) 104–111.
[13] D. Noviana, D. Paramitha, M.F. Ulum, H. Hermawan, The effect of hydrogen gas evolution of magnesium implant on the postimplantation mortality of rats, J. Orthop. Transl. 5 (2016) 9–15.
[14] Y. Gao, A. Yerokhin, A. Matthews, Applied Surface Science Effect of current mode on PEO treatment of magne- sium in Ca- and P-containing electrolyte and resulting coatings, Appl. Surf. Sci. 316 (2014) 558–567. doi:10.1016/j. apsusc.2014.08.035.
[15] B.L. Jiang, Y.F. Ge, Micro-arc oxidation (MAO) to improve the corrosion resistance of magnesium (Mg) alloys, in: Corros. Prev. Magnes. Alloy., Elsevier, 2013: pp. 163–196.
[16] Y. Jang, Z. Tan, C. Jurey, B. Collins, A. Badve, Z. Dong, C. Park, C.S. Kim, J. Sankar, Y. Yun, Systematic understanding of corrosion behavior of plasma electrolytic oxidation treated AZ31 magnesium alloy using a mouse model of subcu- taneous implant., Mater. Sci. Eng. C. Mater. Biol. Appl. 45 (2014) 45–55. doi:10.1016/j.msec.2014.08.052.
[17] T.S.N. Sankara Narayanan, I.S. Park, M.H. Lee, Strategies to improve the corrosion resistance of microarc oxida- tion (MAO) coated magnesium alloys for degradable implants: Prospects and challenges, Prog. Mater. Sci. 60 (2014) 1–71. doi:10.1016/j.pmatsci.2013.08.002.
[18] D. Xue, Y. Yun, Z. Tan, Z. Dong, M.J. Schulz, In vivo and in vitro degradation behavior of magnesium alloys as biomaterials, J. Mater. Sci. Technol. 28 (2012) 261–267.
[19] P.K. Bowen, A. Drelich, J. Drelich, J. Goldman, Rates of in vivo (arterial) and in vitro biocorrosion for pure magne- sium, J. Biomed. Mater. Res. Part A. 103 (2015) 341–349.
[20] F. Witte, The history of biodegradable magnesium implants: a review., Acta Biomater. 6 (2010) 1680–92. doi:10.1016/j.actbio.2010.02.028.
[21] A.B. Khiabani, A. Ghanbari, B. Yarmand, A. Zamanian, M. Mozafari, Improving corrosion behavior and in vitro bioactivity of plasma electrolytic oxidized AZ91 magnesium alloy using calcium fluoride containing electrolyte, Ma- ter. Lett. 212 (2018) 98–102.
7
123