Page 174 - Human Bile Acid Metabolism: a Postprandial Perspective
P. 174

Chapter 9
References
Broeders, E. P. M., Nascimento, E. B. M., Havekes, B., Brans, B., Roumans, K. H. M., Tailleux, A., Schaart, G., Kouach, M., Charton, J., Deprez, B., Bouvy, N. D., Mottaghy, F., Staels, B., van Marken Lichtenbelt, W. D., & Schrauwen, P. (2015). The Bile Acid Chenodeoxycholic Acid Increases Human Brown Adipose Tissue Activity. Cell Metabolism, 1–9.
Brufau, G., Stellaard, F., Prado, K., Bloks, V. W., Jonkers, E., Boverhof, R., Kuipers, F., & Murphy, E. J. (2010). Improved glycemic control with colesevelam treatment in patients with type 2 diabetes is not directly associated with changes in bile acid metabolism. Hepatology (Baltimore, Md.), 52(4), 1455–1464.
Dutia, R., Embrey, M., O’Brien, C. S., Haeusler, R. A., Agénor, K. K., Homel, P., McGinty, J., Vincent, R. P., Alaghband-Zadeh, J., Staels, B., le Roux, C. W., Yu, J., & Laferrère, B. (2015). Temporal changes in bile acid levels and 12α-hydroxylation after Roux-en-Y gastric bypass surgery in type 2 diabetes. International Journal of Obesity, 39(5), 806–813.
Glicksman, C., Pournaras, D. J., Wright, M., Roberts, R., Mahon, D., Welbourn, R., Sherwood, R., Alaghband- Zadeh, J., & le Roux, C. (2010). Postprandial plasma bile acid responses in normal weight and obese subjects. Annals of Clinical Biochemistry, 47(Pt 5), 482–484.
Haeu, N. B., Dirksen, C., Bojsen-Møller, K. N., Kristiansen, V. B., Wulff, B. S., Rainteau, D., Humbert, L., Rehfeld, J. F., Holst, J. J., Madsbad, S., & Clausen, T. R. (2015). Improvements in glucose metabolism early after gastric bypass surgery are not explained by increases in total bile acids and fibroblast growth factor 19 concentrations. Journal of Clinical Endocrinology and Metabolism, 100(3), E396–E406.
Haeusler, R. A., Astiarraga, B., Camastra, S., Accili, D., & Ferrannini, E. (2013). Human insulin resistance is associated with increased plasma levels of 12α-hydroxylated bile acids. Diabetes, 62(12), 4184–4191.
Haeusler, R. A., Pratt-Hyatt, M., Welch, C. L., Klaassen, C. D., & Accili, D. (2012). Impaired generation of 12-hydroxylated bile acids links hepatic insulin signaling with dyslipidemia. Cell Metabolism, 15(1), 65–74.
Hofmann, A. F. (2009). Bile acids: Trying to understand their chemistry and biology with the hope of helping patients. Hepatology, 49(5), 1403–1418.
Kaválková, P., Mráz, M., Trachta, P., Kloučková, J., Cinkajzlová, A., Lacinová, Z., Haluzíková, D., Beneš, M., Vlasáková, Z., Burda, V., Novák, D., Petr, T., Vítek, L., Pelikánová, T., & Haluzík, M. (2016). Endocrine effects of duodenal-jejunal exclusion in obese patients with type 2 diabetes mellitus. Journal of Endocrinology, 231(1), 11–22.
Kohli, R., Bradley, D., Setchell, K. D., Eagon, J. C., Abumrad, N., & Klein, S. (2013). Weight loss induced by Roux-en-Y gastric bypass but not laparoscopic adjustable gastric banding increases circulating bile acids. The Journal of Clinical Endocrinology and Metabolism, 98(4), E708-12.
Kuhre, R. E., Wewer Albrechtsen, N. J., Larsen, O., Jepsen, S. L., Balk-Møller, E., Andersen, D. B., Deacon, C. F., Schoonjans, K., Reimann, F., Gribble, F. M., Albrechtsen, R., Hartmann, B., Rosenkilde, M. M., & Holst, J. J. (2018). Bile acids are important direct and indirect regulators of the secretion of appetite- and metabolism-regulating hormones from the gut and pancreas. Molecular Metabolism, 11, 84–95.
LaRusso, N. F., Hoffman, N. E., Korman, M. G., Hofmann, A. F., & Cowen, A. E. (1978). Determinants of fasting and postprandial serum bile acid levels in healthy man. The American Journal of Digestive Diseases, 23(5), 385–391.
Lefebvre, P., Cariou, B., Lien, F., Kuipers, F., & Staels, B. (2009). Role of bile acids and bile acid receptors in metabolic regulation. Physiological Reviews, 89(1), 147–191.
Legry, V., Francque, S., Haas, J. T., Verrijken, A., Caron, S., Chávez-Talavera, O., Vallez, E., Vonghia, L., Dirinck, E., Verhaegen, A., Kouach, M., Lestavel, S., Lefebvre, P., Van Gaal, L., Tailleux, A., Paumelle, R., & Staels, B. (2017). Bile acid alterations are associated with insulin resistance, but not with NASH, in obese subjects. Journal of Clinical Endocrinology and Metabolism, 102(10), 3783–3794.
Meessen, E. C. E., Sips, F. L. P., Eggink, H. M., Koehorst, M., Romijn, J. A., Groen, A. K., van Riel, N. A. W., & Soeters, M. R. (2020). Model-based data analysis of individual human postprandial plasma bile acid responses indicates a major role for the gallbladder and intestine. Physiological Reports, 8(5).
Patti, M.-E., Houten, S. M., Bianco, A. C., Bernier, R., Larsen, P. R., Holst, J. J., Badman, M. K., Maratos- Flier, E., Mun, E. C., Pihlajamaki, J., Auwerx, J., & Goldfine, A. B. (2009). Serum bile acids are higher in humans with prior gastric bypass: potential contribution to improved glucose and lipid metabolism. Obesity (Silver Spring, Md.), 17(9), 1671–1677.
172
















































































   172   173   174   175   176