Page 161 - Human Bile Acid Metabolism: a Postprandial Perspective
P. 161

References
1. Watanabe M, Houten SM, Mataki C, et al. Bile acids induce energy expenditure by promoting intracellular thyroid hormone activation. Nature 2006; 439: 484−89.
2. Thomas C, Gioiello A, Noriega L, et al. TGR5-mediated bile acid sensing controls glucose homeostasis. Cell Metab 2009; 10: 167−77.
3. Sato H, Genet C, Strehle A, et al. Anti-hyperglycemic activity of a TGR5 agonist isolated from Olea europaea. Biochem Biophys Res Commun 2007; 362: 793−98.
4. Maruyama T, Tanaka K, Suzuki J, et al. Targeted disruption of G protein-coupled bile acid receptor 1 (Gpbar1/M-Bar) in mice. J Endocrinol 2006; 191: 197−205.
5. Reimann F, Gribble F. G protein-coupled receptors as new therapeutic targets for type 2 diabetes. Diabetologia 2016; 59: 229−33.
6. Hodge R, Nunez D. The Therapeutic potential of TGR5 agonists. Hope or hype? Diabetes Obes Metab 2016; 18: 439−43.
7. Kawamata Y, Fujii R, Hosoya M, et al. A G protein-coupled receptor responsive to bile acids. J Biol Chem 2003; 278: 9435−40.
8. Maruyama T, Miyamoto Y, Nakamura T, et al. Identification of membrane-type receptor for bile acids (M-BAR). Biochem Biophys Res Commun 2002; 298: 714−19.
9. Keitel V, Donner M, Winandy S, Kubitz R, Häussinger D. Expression and function of the bile acid receptor TGR5 in Kupffer cells. Biochem Biophys Res Commun 2008; 372: 78−84.
10. Poole DP, Godfrey C, Cattaruzza F, et al. Expression and function of the bile acid receptor GpBAR1 (TGR5) in the murine enteric nervous system. Neurogastroenterol Motil 2010; 22: 814−25, e227–28.
11. Brighton CA, Rievaj J, Kuhre RE, et al. Bile acids trigger GLP-1 release predominantly by accessing basolaterally-located G-protein coupled bile acid receptors. Endocrinology 2015; 156: 3961−70.
12. Kumar DP, Rajagopal S, Mahavadi S, et al. Activation of transmembrane bile acid receptor TGR5 stimulates insulin secretion in pancreatic beta cells. Biochem Biophys Res Commun 2012; 427: 600−05.
13. Pols TWH, Nomura M, Harach T, et al. TGR5 activation inhibits atherosclerosis by reducing macrophage inflammation and lipid loading. Cell Metab 2011; 14: 47−57.
14. Vors C, Pineau G, Drai J, et al. Postprandial endotoxemia linked with chylomicrons and lipopolysaccharides handling in obese versus lean men: a lipid dose-effect trial. J Clin Endocrinol Metab 2015; 100: 3427−35.
15. Alemi F, Kwon E, Poole D, Lieu T. The TGR5 receptor mediates bile acid-induced itch and analgesia.
J Clin Invest 2013; 123: 1513−30. 8
16. Keitel V, Reinehr R, Gatsios P, et al. The G-protein coupled bile salt receptor TGR5 is expressed in liver sinusoidal endothelial cells. Hepatology 2007; 45: 695−704.
17. Futatsugi K, Bahnck K, Brenner M, et al. Optimization of triazole-based TGR5 agonists towards orally available agents. Med Chem Comm 2013; 4: 205−10.
18. Kida T, Tsubosaka Y, Hori M, et al. Bile acid receptor TGR5 agonism induces NO production and reduces monocyte adhesion in vascular endothelial cells. Arterioscler Thromb Vasc Biol 2013; 33: 1663−69.
19. Thomas C, Auwerx J, Schoonjans K. Bile acids and the membrane bile acid receptor TGR5-connecting nutrition and metabolism. Thyroid 2008; 18: 167−74.
20. Duboc H, Taché Y, Hofmann AF. The bile acid TGR5 membrane receptor: from basic research to clinical application. Dig Liver Dis 2014; 46: 302−12.
21. Hofmann AF, Hagey LR. Bile acids: chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci 2008; 65: 2461−83.
22. LaRusso N, Hoffman N, Korman M, Hofmann AF, Cowen A. Determinants of fasting and postprandial serum bile acid levels in healthy man. Am J Dig Dis 1978; 23: 385−91.
23. Sato H, Macchiarulo A, Thomas C, et al. Novel potent and selective bile acid derivatives as TGR5 agonists: biological screening, structure-activity relationships, and molecular modeling studies. J Med Chem 2008; 51: 1831−41.
Review: clinical relevance of TGR5
 159








































































   159   160   161   162   163