Page 54 - Personalised medicine of fluoropyrimidines using DPYD pharmacogenetics Carin Lunenburg
P. 54

Chapter 3
31. van Kuilenburg AB, Hausler P, Schalhorn A, et al. Evaluation of 5-fluorouracil pharmacokinetics in cancer patients with a c.1905+1G>A mutation in DPYD by means of a Bayesian limited sampling strategy. Clin Pharmacokinet. 2012;51(3):163-174.
32. van Kuilenburg AB, Maring JG, Schalhorn A, et al. Pharmacokinetics of 5-fluorouracil in patients heterozygous for the IVS14+1G > A mutation in the dihydropyrimidine dehydrogenase gene. Nucleosides Nucleotides Nucleic Acids. 2008;27(6):692-698.
33. Terrazzino S, Cargnin S, Del RM, Danesi R, Canonico PL, Genazzani AA. DPYD IVS14+1G>A and 2846A>T genotyping for the prediction of severe fluoropyrimidine-related toxicity: a meta- analysis. Pharmacogenomics. 2013;14(11):1255-1272.
34. Magnani E, Farnetti E, Nicoli D, et al. Fluoropyrimidine toxicity in patients with dihydropyrimidine dehydrogenase splice site variant: the need for further revision of dose and schedule. Intern Emerg Med. 2013;8(5):417-423.
35. Kristensen MH, Pedersen PL, Melsen GV, Ellehauge J, Mejer J. Variants in the dihydropyrimidine dehydrogenase, methylenetetrahydrofolate reductase and thymidylate synthase genes predict early toxicity of 5-fluorouracil in colorectal cancer patients. J Int Med Res. 2010;38(3):870-883.
36. Schwab M, Zanger UM, Marx C, et al. Role of genetic and nongenetic factors for fluorouracil treatment-related severe toxicity: a prospective clinical trial by the German 5-FU Toxicity Study Group. J Clin Oncol. 2008;26(13):2131-2138.
37. Salgado J, Zabalegui N, Gil C, Monreal I, Rodriguez J, Garcia-Foncillas J. Polymorphisms in the thymidylate synthase and dihydropyrimidine dehydrogenase genes predict response and toxicity to capecitabine-raltitrexed in colorectal cancer. Oncol Rep. 2007;17(2):325-328.
38. Largillier R, Etienne-Grimaldi MC, Formento JL, et al. Pharmacogenetics of capecitabine in advanced breast cancer patients. Clin Cancer Res. 2006;12(18):5496-5502.
39. Salgueiro N, Veiga I, Fragoso M, et al. Mutations in exon 14 of dihydropyrimidine dehydrogenase and 5-Fluorouracil toxicity in Portuguese colorectal cancer patients. Genet Med. 2004;6(2):102- 107.
40. van Kuilenburg AB, Meinsma R, Zoetekouw L, Van Gennip AH. High prevalence of the IVS14 + 1G>A mutation in the dihydropyrimidine dehydrogenase gene of patients with severe 5-fluorouracil- associated toxicity. Pharmacogenetics. 2002;12(7):555-558.
41. Boisdron-Celle M, Remaud G, Traore S, et al. 5-Fluorouracil-related severe toxicity: a comparison of different methods for the pretherapeutic detection of dihydropyrimidine dehydrogenase deficiency. Cancer letters. 2007;249(2):271-282.
42. Deenen MJ, Tol J, Burylo AM, et al. Relationship between single nucleotide polymorphisms and haplotypes in DPYD and toxicity and efficacy of capecitabine in advanced colorectal cancer. Clin Cancer Res. 2011;17(10):3455-3468.
43. Raida M, Schwabe W, Hausler P, et al. Prevalence of a common point mutation in the Dihydropyrimidine dehydrogenase (DPD) gene within the 5 ‘-splice donor site of intron 14 in patients with severe 5-fluorouracil (5-FU)-related toxicity compared with controls. Clinical Cancer Research. 2001;7(9):2832-2839.
44. Loganayagam A, Arenas HM, Corrigan A, et al. Pharmacogenetic variants in the DPYD, TYMS, CDA and MTHFR genes are clinically significant predictors of fluoropyrimidine toxicity. Br J Cancer.  2013;108(12):2505-2515.
45. Joerger M, Huitema AD, Boot H, et al. Germline TYMS genotype is highly predictive in patients
52


















































































   52   53   54   55   56