Page 293 - Personalised medicine of fluoropyrimidines using DPYD pharmacogenetics Carin Lunenburg
P. 293
Compound heterozygous DPYD variant allele carriers
34. Francioli L, Menelaou A, Pulit S, et al. Genome of the Netherlands Consortium. Whole-genome sequence variation, population structure and demographic history of the Dutch population. Nat Genet. 2014;46(8):818-825.
35. Python. Python Software Foundation©. 2001; https://www.python.org/.
36. IGSR. The International Genome Sample Resource. 2008; http://www.internationalgenome.org/
Accessed 29th June 2017.
37. Li H. Tabix: fast retrieval of sequence features from generic TAB-delimited files. Bioinformatics.
2011;27(5):718-719.
38. R. Core Team. R: A Language and Environment for Statistical Computing. 2018; https://www.R-
project.org.
39. Toffoli G, Giodini L, Buonadonna A, et al. Clinical validity of a DPYD-based pharmacogenetic test
to predict severe toxicity to fluoropyrimidines. Int J Cancer. 2015;137(12):2971-2980.
40. Johnson MR, Wang K, Diasio RB. Profound dihydropyrimidine dehydrogenase deficiency resulting
from a novel compound heterozygote genotype. Clin Cancer Res. 2002;8(3):768-774.
41. Jacobs BAW, Deenen MJ, Pluim D, et al. Pronounced between-subject and circadian variability in thymidylate synthase and dihydropyrimidine dehydrogenase enzyme activity in human
volunteers. Br J Clin Pharmacol. 2016;82(3):706-716.
42. Meulendijks D, Henricks LM, Amstutz U, et al. Rs895819 in MIR27A improves the predictive value
of DPYD variants to identify patients at risk of severe fluoropyrimidine-associated toxicity. Int J Cancer. 2016;138(11):2752-2761.
11
291