Page 86 - Synthesis of Functional Nanoparticles Using an Atmospheric Pressure Microplasma Process - LiangLiang Lin
P. 86
Chapter 4
4.5 Conclusions
In present chapter a continuous, scalable and one step process for the synthesis of TiN nanoparticles by the microplasma technique, at a relatively low power consumption, was described for the first time. The microplasma was characterized by electrical and OES measurements. The observed OES spectra indicate dissociation of TiCl4 vapors and increase in precursor fragments density with discharge power. Through complementary analytical methods such as EDX, TEM, HRTEM, SAED, XRD and XPS, it was proven that TiN nanoparticles with characteristic size of 10 nm, narrow size distribution and polycrystalline nature were produced, although TiO2 impurities were also detected. However, it was demonstrated that the admixture of H2 to the plasma during synthesis process can be an effective way to reduce the TiO2 content. Additionally, this work not only illustrated a hypothesized mechanism for the TiN nanoparticle synthesis by microplasma process, but also carried out the comparative analysis of typical parameters among competing technologies, such as microplasma process, conventional plasma processes and non-plasma processes, to show their respective pros and cons. Based on the experimentally determined operational space for a single microdischarge, a microplasma array was shown as a promising way to upscale the throughput of microplasma process in nanomaterial synthesis even towards industrial level. In a broad view, it can be expected that the studied process has the potential to be applied to synthesize other nitride nanoparticles, such as ZrN, CrN, VN, NbN, etc.
References
(1) Zhang, S.; Zhu, W. J. Mater. Process. Tech. 1993, 39 (1–2), 165–177.
(2) Perillo, P. M. Am. J. Mater. Sci. Appl. 2015, 3 (2), 18–25.
(3) Cardinal, S.; Malchère, A.; Garnier, V.; Fantozzi, G. Int. J. Refract. Met. Hard Mater. 2009, 27 (3), 521–527.
(4) Hernández Mainet, L. C.; Cabrera, L.; Rodriguez, E.; Cruz, A.; Santana, G.; Menchaca, J.; Pérez- Tijerina, E. Nanoscale Res. Lett. 2012, 7 (1), 80.
(5) Guler, U.; Li, W.; Boltasseva, A.; Kildishev, A.; Shalaev, V. M. 2014 Conf. Lasers Electro-Optics- Laser Sci. to Photonic Appl. 2014, 1–2.
(6) Lima, L. P. B.; Diniz, J. A.; Doi, I.; Godoy Fo, J. Microelectron. Eng. 2012, 92, 86–90.
(7) Aryan, N. P.; Asad, M. I. H. Bin; Brendler, C.; Kibbel, S.; Heusel, G.; Rothermel, A. Conf. Proc. IEEE Eng. Med. Biol. Soc. 2011, 2011, 2866–2869.
(8) Li, F.; Ohnishi, R.; Yamada, Y.; Kubota, J.; Domen, K.; Yamada, A.; Zhou, H. Chem. Commun. 2013, 49 (12), 1175.
(9) Guler, U.; Ndukaife, J. C.; Naik, G. V.; Nnanna, a. G. A.; Kildishev, A.; Shalaev, V. M.; Boltasseva, A. Nano Lett. 2013, 13, 6078–6083.
(10) Bora, B.; Aomoa, N.; Kakati, M.; Bhuyan, H. Powder Technol. 2013, 246, 413–418.
(11) Das, (12) Res. (13) (14) (15) (16)
Kakati, M.; Bora, B.; Sarma, S.; Saikia, B. J.; Shripathi, T.; Deshpande, U.; Dubey, A.; Ghosh, G.; A. K. Vacuum 2008, 82 (8), 833–841.
Samokhin, A. V.; Sinaiskii, V. A.; Alekseev, N. V.; Troitskaya, E. V.; Tsvetkov, Y. V. Mater. Appl. 2014, 5 (3), 224–229.
Ananthapadmanabhan, P.; Taylor, P.; Zhu, W. J. Alloys Compd. 1999, 287, 126–129. Valente, T.; Carassiti, F.; Suzuki, M.; Tului, M. Surf. Eng. 2000, 16 (4), 339–343.
Yoshida, T.; Kawasaki, A.; Nakagawa, K.; Akashi, K. J. Mater. Sci. 1979, 14, 1624–1630. Tavares, J.; Coulombe, S.; Meunier, J.-L. J. Phys. D. Appl. Phys. 2009, 42 (10), 102001.
74