Page 68 - Synthesis of Functional Nanoparticles Using an Atmospheric Pressure Microplasma Process - LiangLiang Lin
P. 68
Chapter 3
Figure 3.13 Assumed mechanism for general ferrocene decomposition process 3.5 Conclusions
In summary, we presented a detailed study on the synthesis process and properties of iron oxide nanoparticles produced in the novel atmospheric pressure microplasma reactor. Results show plasma power and precursor concentration have a significant effect on the nanoparticles morphology and composition. By means of comprehensive study with complementing analytical methods i.e. EDX, TEM, HRTEM, SAED, XRD and XPS, the produced particles were proven to be of nanometer scale, having polycrystalline nature and well dispersed. In addition, possible plasma assisted mechanisms of ferrocene dissociation were discussed based on experimental data and information from literature.
The setup can be readily applied to nucleate nanoparticles from different metals- by choosing other organometallic precursors. Applicability of the concept to different chemistries will be demonstrated in the following chapters. Due to its high degree of constructive flexibility, with several exchangeable subunits, such a micro reactor can be viewed as a multi-functional system.
Reference
(1) Zanganeh, S.; Hutter, G.; Spitler, R.; Lenkov, O.; Mahmoudi, M.; Shaw, A.; Pajarinen, J. S.; Nejadnik, H.; Goodman, S.; Moseley, M. Nat. Nanotechnol. 2016, 11 (11), 986–994.
(2) Shi, D.; Sadat, M. E.; Dunn, A. W.; Mast, D. B. Nanoscale 2015, 7 (18), 8209–8232.
(3) Songbai W, Guangjiu L, Dongping L, Size Y, Plasma Sci Technol. 2014, 16 (3): 219-222
(4) Chirita, M.; Grozescu, I. Chem Bull Politeh. Univ Timsisoara 2009, 54 (68), 1–8.
(5) Amara, D.; Margel, S. J. Mater. Chem. 2011, 21 (39), 15764–15772.
(6) Bhattacharjee, A.; Rooj, A.; Roy, D.; Roy, M. J. Exp. Phys. 2014, 2014, 1–8.
(7) Elihn, K.; Otten, F.; Boman, M.; Kruis, F. E.; Fissan, H.; Carlsson, J. O. Nanostructured Mater. 1999, 12 (1), 79–82.
(8) Elihn, K.; Otten, F.; Boman, M.; Heszler, P.; Kruis, F. E.; Fissan, H.; Carlsson, J. O. Appl. Phys. A Mater. Sci. Process. 2001, 72, 29–34.
(9) Elihn, K.; Landstrom, L.; Alm, O.; Boman, M.; Heszler, P. J. Appl. Phys. 2007, 101 (3), 034311. (10) Martinson, A. B. F.; DeVries, M. J.; Libera, J. a; Christensen, S. T.; Hupp, J. T.; Pellin, M. J.; Elam, J. W. J. Phys. Chem. C 2011, 115, 4333–4339.
56