Page 31 - Synthesis of Functional Nanoparticles Using an Atmospheric Pressure Microplasma Process - LiangLiang Lin
P. 31
Introduction - Plasma and Microplasma-assisted Nanofabrication
In Chapter 8, Ag nanoparticles were produced by plasma reduction of tollen’s agent. Silver nitrite solution was also used as the precursor for a reference. Moreover, anti-bacteria tests of the obtained Ag nanoparticles against E. coli. were performed to demonstrate the viability of the studied technique for bio-applications.
Finally, Chapter 9 summarizes the results and gives technology assessment, future perspectives and challenges of this technique.
References
(1) Pengo, P.; Baltzer, L.; Pasquato, L.; Scrimin, P. Angew. Chemie - Int. Ed. 2007, 46 (3), 400–404. (2) Chen, S.; Yuan, R.; Chai, Y.; Hu, F. Microchim. Acta 2013, 180, 15–32.
(3) Chen, X.-J.; Sanchez-Gaytan, B. L.; Qian, Z.; Park, S.-J. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2012, 4 (3), 273–290.
(4) Cao, X.; Feng, J.; Pan, Q.; Xiong, B.; He, Y.; Yeung, E. S. Anal. Chem. 2017, 89 (5), 2692–2697. (5) Reiss, G.; Hütten, A. Nat. Mater. 2005, 4 (10), 725–726.
(6) De Volder, M. F. L.; Tawfick, S. H.; Baughman, R. H.; Hart, A. J. Science (80). 2013, 339 (6119), 535–539.
(7) Salata, O. J. Nanobiotechnology 2004, 2 (1), 3.
(8) Abdelhalim, M. A. K.; M. Mady, M. J. Nanomed. Nanotechnol. 2012, 03 (03).
(9) Chiang, W.-H.; Sankaran, R. M. Diam. Relat. Mater. 2009, 18 (5–8), 946–952.
(10) Li, Y.; Kim, W.; Zhang, Y.; Rolandi, M.; Wang, D.; Dai, H. J. Phys. Chem. B 2001, 105 (46), 11424–11431.
(11) Vankayala, R.; Kuo, C.-L.; Sagadevan, A.; Chen, P.-H.; Chiang, C.-S.; Hwang, K. C. J. Mater. Chem. B 2013, 1 (35), 4379.
(12) Förster, H.; Wolfrum, C.; Peukert, W. J. Nanoparticle Res. 2012, 14 (7), 1–16.
(13) Nie, M.; Sun, K.; Meng, D. D. J. Appl. Phys. 2009, 106 (5), 1–5.
(14) Prasad Yadav, T.; Manohar Yadav, R.; Pratap Singh, D. Nanosci. Nanotechnol. 2012, 2 (3), 22–48. (15) Povarnitsyn, M. E.; Itina, T. E.; Levashov, P. R.; Khishchenko, K. V. Phys. Chem. Chem. Phys. 2013, 15 (9), 3108–3114.
(16) Liu, K.; Lukach, A.; Sugikawa, K.; Chung, S.; Vickery, J.; Therien-Aubin, H.; Yang, B.; Rubinstein, M.; Kumacheva, E. Angew. Chemie - Int. Ed. 2014, 53 (10), 2648–2653.
(17) Nahar, L.; Arachchige, I. JSM Nanotechnol. Nanomedicne 2013, 1 (1), 1004.
(18) Stubenrauch, C.; Wielpütz, T.; Sottmann, T.; Roychowdhury, C.; DiSalvo, F. J. Colloids Surfaces A Physicochem. Eng. Asp. 2008, 317, 328–338.
(19) Tang, K. B.; Qian, Y. T.; Zeng, J. H.; Yang, X. G. Adv. Mater. 2003, 15 (5), 448–450.
(20) Li, X.; Xu, H.; Chen, Z. S.; Chen, G. J. Nanomater. 2011, 2011, 270974.
(21) Krajina, B. A.; Proctor, A. C.; Schoen, A. P.; Spakowitz, A. J.; Heilshorn, S. C. Prog. Mater. Sci. 2018, 91, 1–23.
(22) Mittal, A. K.; Chisti, Y.; Banerjee, U. C. Biotechnol. Adv. 2013, 31 (2), 346–356.
(23) Shahbazali, E.; Hessel, V.; Noël, T.; Wang, Q. Nanotechnol. Rev. 2013, 0 (0), 1–23.
(24) Kumar, V.; Yadav, S. K. J. Chem. Technol. Biotechnol. 2009, 84 (2), 151–157.
(25) Bogaerts, A.; Neyts, E.; Gijbels, R.; Van der Mullen, J. Spectrochim. Acta - Part B At. Spectrosc. 2002, 57 (4), 609–658.
(26) Ito, T.; Terashima, K. Appl. Phys. Lett. 2002, 80 (15), 2648–2650.
(27) Kareem, T. A.; Kaliani, A. A. Ionics (Kiel). 2012, 18 (3), 315–327.
(28) Patil, B. S.; Wang, Q.; Hessel, V.; Lang, J. Catal. Today 2015, 256, 49–66.
(29) Ishaq, M.; Evans, M.; Ostrikov, K. Int. J. Cancer 2014, 134 (7), 1517–1528.
(30) Fridman, G.; Friedman, G.; Gutsol, A.; Shekhter, A. B.; Vasilets, V. N.; Fridman, A. Plasma Process. Polym. 2008, 5 (6), 503–533.
(31) Vons, V.; Creyghton, Y.; Schmidt-Ott, A. J. Nanoparticle Res. 2006, 8 (5), 721–728.
(32) Kortshagen, U. R.; Sankaran, R. M.; Pereira, R. N.; Girshick, S. L.; Wu, J. J.; Aydil, E. S. Chem.
19