Page 147 - Synthesis of Functional Nanoparticles Using an Atmospheric Pressure Microplasma Process - LiangLiang Lin
P. 147
Rare Earth Doped Yttrium Oxide Nanophosphors Synthesis and Engineering- Controllable Photoluminescence Properties
preparing lanthanide doped nanophosphors, such as the vigorous hydrolyzing reactions, the associated micro-sized particles, the inhomogeneous doping of luminescent ions within the host materials as well as the involvement of extra solvents, stabilizers or surfactants. As a result, it obviates the complex, time-consuming purification/post separation procedures and greatly simplifies the overall synthesis workflow.26–28 Based on the technological underpinning, this approach opens a new avenue for lanthanide doped/co-doped nanophosphors synthesis, and is expected to have great potential in the green synthesis and engineering of nanophosphors with desirable photoluminescence properties.
References
(1) Bruchez Jr., M. Science. 1998, 281 (5385), 2013–2016.
(2) Wang, L.; Yan, R.; Huo, Z.; Wang, L.; Zeng, J.; Bao, J.; Wang, X.; Peng, Q.; Li, Y. Angew. Chemie - Int. Ed. 2005, 44 (37), 6054–6057.
(3) Bouzigues, C.; Gacoin, T.; Alexandrou, A. ACS Nano 2011, 5 (11), 8488–8505.
(4) Venkatachalam, N.; Saito, Y.; Soga, K. J. Am. Ceram. Soc. 2009, 92 (5), 1006–1010.
(5) Rai, M.; Kaur, G.; Singh, S. K.; Rai, S. B. Dalt. Trans. 2015, 44 (13), 6184–6192.
(6) Liu, Y.; Zhu, L.; Sun, X.; Chen, J. AIChE J. 2010, 56 (9), 2338–2346.
(7) Bruggeman, P.; Schram, D. C.; Kong, M. G.; Leys, C. Plasma Process. Polym. 2009, 6 (11), 751– 762.
(8) Darwiche, S.; Nikravech, M.; Awamat, S.; Morvan, D.; Amouroux, J. J. Phys. D. Appl. Phys. 2007, 40 (4), 1030–1036.
(9) P. J. Bruggeman, M. J. Kushner, B. R. Locke, J. G. E. Gardeniers, W. G. Graham, D. B. Graves, R. C. H. M. Hofman-Caris, D. Maric, J. P. Reid, E. Ceriani, D. Fernandez Rivas, J. E. Foster, S. C. Garrick, Y. Gorbanev, S. Hamaguchi, F. Iza, H. Jablonowski, E. Klimova, J. Kolb, F. Krcma, P. Lukes, Z. Machala, I. Marinov, D. Mariotti, S. Mededovic Thagard, D. Minakata, E. C. Neyts, J. Pawlat, Z. L. Petrovic, R. Pflieger, S. Reuter, D. C. Schram, S. Schröter, M. Shiraiwa, B. Tarabová, P. A. Tsai, J. R. R. Verlet, T. von Woedtke, K. R. Wilson, K. Yasui, G. Zvereva. Plasma Sources Sci. Technol. 2016, 25 (5), 053002.
(10) Kondo, A.; Noguchi, H.; Ohnishi, S.; Kajiro, H.; Tohdoh, A.; Hattori, Y.; Xu, W. C.; Tanaka, H.; Kanoh, H.; Kaneko, K. Nano Lett. 2006, 6 (11), 2581–2584.
(11) Giang, L. T. K.; Anh, T. K.; Marciniak, L.; Hreniak, D.; Strek, W.; Lojkowski, W.; Minh, L. Q. Phys. Procedia 2015, 76, 73–79.
(12) Sato, T.; Imaeda, S.; Sato, K. Thermochim. Acta 1988, 133 (C), 79–85.
(13) Xiao, Y.; Wu, D.; Jiang, Y.; Liu, N.; Liu, J.; Jiang, K. J. Alloys Compd. 2011, 509 (19), 5755–5760. (14) Tu, D.; Liu, Y.; Zhu, H.; Li, R.; Liu, L.; Chen, X. Angew. Chemie - Int. Ed. 2013, 52 (4), 1128– 1133.
(15) Mercier, F.; Alliot, C.; Bion, L.; Thromat, N.; Toulhoat, P. J. Electron Spectros. Relat. Phenomena 2006, 150 (1), 21–26.
(16) Costa AL, Serantoni M, Blosi M. Adv Eng Mater. 2010;12(3):205-209.
(17) Gougousi, T.; Chen, Z. Thin Solid Films 2008, 516 (18), 6197–6204.
(18) Chen, Z. M.; Jiang, S. X.; Guo, R. H.; Xin, B. J.; Miao, D. G. Mater. Technol. Perform. Mater. 2014, 29 (4), 198–203.
(19) Jadhav, A. P.; Pawar, A. U.; Pal, U.; Kang, Y. S. J. Mater. Chem. C 2014, 2 (3), 496–500.
(20) Guo, H.; Qiao, Y. M. Opt. Mater. (Amst). 2009, 31 (4), 583–589.
(21) Ninjbadgar, T.; Garnweitner, G.; Boärger, A.; Goldenberg, L. M.; Sakhno, O. V.; Stumpe, J. Adv. Funct. Mater. 2009, 19 (11), 1819–1825.
(22) Pan, G.; Song, H.; Bai, X.; Fan, L.; Yu, H.; Dai, Q.; Dong, B.; Qin, R.; Li, S.; Lu, S. J. Phys. Chem.
135