Page 25 - Maximizing the efficacy of ankle foot orthoses in children with cerebral palsy
P. 25
[22] Bell KJ, Ounpuu S, DeLuca PA, Romness MJ. Natural progression of gait in children with cerebral palsy. J. Pediatr. Orthop. 2002, 22(5); 677-82.
[23] Sutherland DH, Cooper L. The pathomechanics of progressive crouch gait in spastic diplegia. Orthop. Clin. North Am. 1978, 9(1); 143-54.
[24] Rose J, Gamble JG, Burgos A, Medeiros J, Haskell WL. Energy expenditure index of walking for normal children and for children with cerebral palsy. Dev. Med. Child Neurol. 1990, 32(4); 333-40.
[25] Brehm MA, Becher J, Harlaar J. Reproducibility evaluation of gross and net walking efficiency in children with cerebral palsy. Dev. Med. Child Neurol. 2007, 49(1); 45-8.
[26] Thomas SS, Buckon CE, Schwartz MH, Russman BS, Sussman MD, Aiona MD. Variability and minimum detectable change for walking energy efficiency variables in children with cerebral palsy. Dev. Med. Child Neurol. 2009, 51(8); 615-21.
[27] Hicks JL, Schwartz MH, Arnold AS, Delp SL. Crouched postures reduce the capacity of muscles to extend the hip and knee during the single-limb stance phase of gait. J. Biomech. 2008, 41(5); 960-7.
[28] Rose J, Gamble JG, Burgos A, Medeiros J, Haskell WL. Energy expenditure index of walking for normal children and for children with cerebral palsy. Dev Med Child Neurol 1990, 32(4); 333-40.
[29] Kuo AD, Donelan JM. Dynamic principles of gait and their clinical implications. Phys. Ther. 2010, 90(2); 157-74.
[30] Collins SH, Kuo AD. Recycling energy to restore impaired ankle function during human walking. PLoS. One. 2010, 5(2); e9307.
[31] Ballaz L, Plamondon S, Lemay M. Ankle range of motion is key to gait efficiency in adolescents with cerebral palsy. Clin. Biomech. (Bristol. , Avon. ) 2010, 25(9); 944-8.
[32] Steinwender G, Saraph V, Zwick EB, Steinwender C, Linhart W. Hip locomotion mechanisms in cerebral palsy crouch gait. Gait Posture 2001, 13(2); 78-85.
[33] Peterson CL, Kautz SA, Neptune RR. Muscle work is increased in pre-swing during hemiparetic walking. Clin. Biomech. (Bristol. , Avon. ) 2011, 26(8); 859-66.
[34] Farris DJ, Hampton A, Lewek MD, Sawicki GS. Revisiting the mechanics and energetics of walking in individuals with chronic hemiparesis following stroke: from individual limbs to lower limb joints. Journal of NeuroEngineering and Rehabilitation 2015, 12(24).
[35] Wingstrand M, Hagglund G, Rodby- Bousquet E. Ankle-foot orthoses in children with cerebral palsy: a cross sectional population based study of 2200 children. BMC. Musculoskelet. Disord. 2014, 15(1); 327.
[36] Morris C, Bowers R, Ross K, Stevens P, Phillips D. Orthotic management of cerebral palsy: recommendations from a consensus conference. NeuroRehabilitation. 2011, 28(1); 37-46.
[37] Harlaar J, Brehm MA, Becher JG, Bregman DJ, Buurke J, Holtkamp F, De Groot V, Nollet
F. Studies examining the efficacy of ankle
foot orthoses should report activity level and mechanical evidence. Prosthet Orthot Int. 2010, 34(3); 327-35.
[38] Balaban B, Yasar E, Dal U, Yazicioglu K, Mohur H, Kalyon TA. The effect of hinged ankle- foot orthosis on gait and energy expenditure in spastic hemiplegic cerebral palsy. Disabil. Rehabil. 2007, 29(2); 139-44.
[39] Lam WK, Leong JC, Li YH, Hu Y, Lu WW. Biomechanical and electromyographic evaluation of ankle foot orthosis and dynamic ankle foot orthosis in spastic cerebral palsy. Gait Posture 2005, 22(3); 189-97.
[40] Buckon CE, Thomas SS, Jakobson-Huston S, Moor M, Sussman M, Aiona M. Comparison of three ankle-foot orthosis configurations for children with spastic diplegia. Dev. Med. Child Neurol. 2004, 46(9); 590-8.
I
General introduction
25