Page 81 - Physico-Chemical Niche Conditions for Bone Cells
P. 81

36. Jain, N.; Iyer, K.V.; Kumar, A.; Shivashankar, G.V. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. Proc. Natl. Acad. Sci. USA 2013, 110, 11349–11354, doi:10.1073/pnas.1300801110.
37. Le, H.Q.; Ghatak, S.; Yeung, C.Y.C.; Tellkamp, F.; Günschmann, C.; Dieterich, C.; Yeroslaviz, A.; Habermann, B.; Pombo, A.; Niessen, C.M.; et al. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell Biol. 2016, 18, 864–875, doi:10.1038/ncb3387.
38. Kim, D.H.; Hah, J.; Wirtz, D. Mechanics of the cell nucleus. In Advances in Experimental Medicine and Biology; Springer: Cham, Switzerland,: 2018; Volume 1092, pp. 41–55.
39. Bacabac,R.G.;Smit,T.H.;Mullender,M.G.;Dijcks,S.J.;vanLoon,J.J.W..;Klein-Nulend, J. Nitric oxide production by bone cells is fluid shear stress rate dependent. Biochem. Biophys. Res. Commun. 2004, 315, 823–829, doi:10.1016/j.bbrc.2004.01.138.
40. Bacabac, R.G.; Smit, T.H.; Cowin, S.C.; van Loon, J.J.W.A.; Nieuwstadt, F.T.M.; Heethaar, R.; Klein-Nulend, J. Dynamic shear stress in parallel-plate flow chambers. J. Biomech. 2005, 38, 159–167, doi:10.1016/j.jbiomech.2004.03.020.
41. Pavalko, F.M.; Chen, N.X.; Turner, C.H.; Burr, D.B.; Atkinson, S.; Hsieh, Y.F.; Qiu, J.; Duncan, R.L. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. Physiol. 1998, 275, C1591– C1601, doi:10.1152/ajpcell.1998.275.6.C1591.
42. Ingber, D.E. Tensegrity: The architectural basis of cellular mechanotransduction. Annu. Rev. Physiol. 2002, 59, 575–599, doi:10.1146/annurev.physiol.59.1.575.
43. Collier, M.P.; Benesch, J.L.P. Small heat-shock proteins and their role in mechanical stress. Cell Stress Chaperones 2020, 25, 601–613, doi:10.1007/s12192−020−01095-z.
44. Hang, K.; Ye, C.; Chen, E.; Zhang, W.; Xue, D.; Pan, Z. Role of the heat shock protein family in bone metabolism. Cell Stress Chaperones 2018, 23, 1153–1164, doi:10.1007/s12192−018−0932-z.
45. Klein-Nulend, J.; Roelofsen, J.; Sterck, J.G.H.; Semeins, C.M.; Burger, E.H. Mechanical loading stimulates the release of transforming growth factor-beta activity by cultured mouse calvariae and periosteal cells. J. Cell. Physiol. 1995, 163, 115–119, doi:10.1002/jcp.1041630113.
46. Klein-Nulend, J.; Burger, E.H.; Semeins, C.M.; Raisz, L.G.; Pilbeam, C.C. Pulsating fluid flow stimulates prostaglandin release and inducible prostaglandin G/H synthase mRNA expression in primary mouse bone cells. J. Bone Miner. Res. 1997, 12, 45–51, doi:10.1359/jbmr.1997.12.1.45.
47. Wettstein,G.;Bellaye,P.S.;Micheau,O.;Bonniaud,P.Smallheatshockproteinsandthe cytoskeleton: An essential interplay for cell integrity? Int. J. Biochem. Cell Biol. 2012, 44, 1680–1686, doi:10.1016/j.biocel.2012.05.024.
48. Jin, J.; Bakker, A.D.; Wu, G.; Klein-Nulend, J.; Jaspers, R.T. Physicochemical niche conditions and mechanosensing by osteocytes and myocytes. Curr. Osteoporos. Rep. 2019, 17, 235–249, doi:10.1007/s11914−019−00522−0.
49. Florencio-Silva, R.; Sasso, G.; Sasso-Cerri, E.; Simões, M.; Cerri, P. Biology of bone tissue: Structure, function, and factors that influence bone cells. BioMed Res. Int. 2015, 2015, 1–17, doi:10.1155/2015/421746.
50. Dráberová, E.; Stegurová, L.; Sulimenko, V.; Hájková, Z.; Dráber, P.; Dráber, P. Quantification of α-tubulin isotypes by sandwich ELISA with signal amplification through biotinyl-tyramide or immuno-PCR. J. Immunol. Methods 2013, 395, 63–70, doi:10.1016/j.jim.2013.07.001.
51. Klein-Nulend,J.;Bacabac,R.G.;Bakker,A.D.Mechanicalloadingandhowitaffectsbone cells: The role of the osteocyte cytoskeleton in maintaining our skeleton. Eur. Cells Mater. 2012, 24, 278–291, doi:10.22203/eCM.v024a20.
52. Fletcher, D.A.; Mullins, R.D. Cell mechanics and the cytoskeleton. Nature 2010, 463, 485–492, doi:10.1038/nature08908.
53. Hagel, M.; George, E.L.; Kim, A.; Tamimi, R.; Opitz, S.L.; Turner, C.E.; Imamoto, A.; Thomas, S.M. The adaptor protein paxillin is essential for normal development in the
Chapter 3
79
 3














































































   79   80   81   82   83