Page 48 - Physico-Chemical Niche Conditions for Bone Cells
P. 48
Physicochemical niche conditions and mechanosensing
mechanotransduction: from tension to function. Front. Physiol. 2018, 9, 1–21,
doi:10.3389/fphys.2018.00824.
20. Florencio-Silva, R.; Sasso, G.; Sasso-Cerri, E.; Simões, M.; Cerri, P. Biology of bone
tissue: structure, function, and factors that influence bone cells. Biomed Res. Int. 2015,
2015, 1–17, doi:10.1155/2015/421746.
21. Vezeridis, P.; Semeins, C.; Chen, Q.; Klein-Nulend, J. Osteocytes subjected to
pulsating fluid flow regulate osteoblast proliferation and differentiation. Biochem Bioph
Res Co 2006, 348, 1082–1088, doi:10.1016/j.bbrc.2006.07.146.
22. Kamioka, H.; Honjo, T.; Takano-Yamamoto, T. A three-dimensional distribution of osteocyte processes revealed by the combination of confocal laser scanning microscopy and differential interference contrast microscopy. Bone 2001, 28, 145–149,
doi:10.1016/S8756-3282(00)00421-X.
23. Liao, C.; Cheng, T.; Wang, S.; Zhang, C.; Jin, L.; Yang, Y. Shear stress inhibits IL-17A-
mediated induction of osteoclastogenesis via osteocyte pathways. Bone 2017, 101, 10–
20, doi:10.1016/j.bone.2017.04.003.
24. Xu, L.H.; Shao, H.; Ma, Y. V; You, L. OCY454 osteocytes as an in vitro cell model for
bone remodeling under mechanical loading. J. Orthop. Res. 2019, 37, 1–9,
doi:10.1002/jor.24302.
25. Woo, S.M.; Rosser, J.; Dusevich, V.; Kalajzic, I.; Bonewald, L.F. Cell line IDG-SW3
replicates osteoblast-to-late-osteocyte differentiation in vitro and accelerates bone
formation in vivo. J. Bone Miner. Res. 2011, 26, 2634–2646, doi:10.1002/jbmr.465.
26. Motohashi, N.; Asakura, A. Muscle satellite cell heterogeneity and self-renewal. Front.
Cell Dev. Biol. 2014, 2, 1–21, doi:10.3389/fcell.2014.00001.
27. Yin, H.; Price, F.; Rudnicki, M. Satellite cells and the muscle stem cell niche. Physiol
Rev 2013, 93, 23–67, doi:10.1152/physrev.00043.2011.
28. Hawke, T.J.; Garry, D.J. Myogenic satellite cells: physiology to molecular biology. J.
Appl. Physiol. 2001, 91, 534–551, doi:10.1152/jappl.2001.91.2.534.
29. Maesner, C.C.; Almada, A.E.; Wagers, A.J. Established cell surface markers efficiently isolate highly overlapping populations of skeletal muscle satellite cells by fluorescence-
activated cell sorting. Skelet. Muscle 2016, 6, 35, doi:10.1186/s13395-016-0106-6.
30. Joe, A.W.B.; Yi, L.; Natarajan, A.; Le Grand, F.; So, L.; Wang, J.; Rudnicki, M.A.; Rossi, F.M.V. Muscle injury activates resident fibro/adipogenic progenitors that facilitate
myogenesis. Nat. Cell Biol. 2010, 12, 153–163, doi:10.1038/ncb2015.
31. Liu, W.; Wei-LaPierre, L.; Klose, A.; Dirksen, R.T.; Chakkalakal, J. V Inducible depletion of adult skeletal muscle stem cells impairs the regeneration of neuromuscular junctions.
Elife 2015, 4, 1–20, doi:10.7554/eLife.09221.
32. Hiroshi, N.; John A, S.; Yasuo, M. Role of exercise in maintaining the integrity of the
neuromuscular junction. Muscle and Nerve 2014, 49, 315–324, doi:10.1002/mus.24095.
33. Wosczyna, M.N.; Rando, T.A. A muscle stem cell support group: coordinated cellular responses in muscle regeneration. Dev. Cell 2018, 46, 135–143,
doi:10.1016/j.devcel.2018.06.018.
34. Campbell, I.; Humphries, M. Integrin structure, activation, and interactions. Cold Spring
Harb. Perspect. Biol. 2011, 3, 1–14, doi:10.1101/cshperspect.a004994.
35. Litzenberger, J.B.; Kim, J.B.; Tummala, P.; Jacobs, C.R. β1 Integrins mediate mechanosensitive signaling pathways in steocytes. Calcif. Tissue Int. 2010, 86, 325–
332, doi:10.1007/s00223-010-9343-6.
36. Wang, Y.; McNamara, L.M.; Schaffler, M.B.; Weinbaum, S. A model for the role of
integrins in flow induced mechanotransduction in osteyocytes. Proc. Natl. Acad. Sci.
USA 2007, 104, 15941–15946, doi:10.1109/NEBC.2007.4413269.
37. Pedersen, B.K. Muscles and their myokines. J. Exp. Biol. 2010, 214, 337–346,
doi:10.1242/jeb.048074.
38. Guo, B.; Zhang, Z.-K.; Liang, C.; Li, J.; Liu, J.; Lu, A.; Zhang, B.-T.; Zhang, G. Molecular
communication from skeletal muscle to bone: a review for muscle-derived myokines regulating bone metabolism. Calcif. Tissue Int. 2017, 100, 184–192, doi:10.1007/s00223-016-0209-4.
46