Page 161 - Physico-Chemical Niche Conditions for Bone Cells
P. 161
cell polarization and migration by a gradient of nanoscale variations in adhesive ligand
spacing. Nano Lett. 2008, 8, 2063–2069, doi:10.1021/nl801483w.
35. Oria, R.; Wiegand, T.; Escribano, J.; Elosegui-Artola, A.; Uriarte, J.J.; Moreno-Pulido, C.; Platzman, I.; Delcanale, P.; Albertazzi, L.; Navajas, D.; et al. Force loading explains
spatial sensing of
ligands by cells. Nature 2017, 552, 219–224,
doi:10.1038/nature24662.
36. Khatiwala, C.B.; Kim, P.D.; Peyton, S.R.; Putnam, A.J. ECM Compliance Regulates
Osteogenesis by Influencing MAPK Signaling Downstream of RhoA and ROCK. J.
Bone Miner. Res. 2009, 24, 886–898, doi:10.1359/jbmr.081240.
37. Frith, J.E.; Mills, R.J.; Cooper-White, J.J. Lateral spacing of adhesion peptides influences human mesenchymal stem cell behaviour. J. Cell Sci. 2012, 125, 317–327,
doi:10.1242/jcs.087916.
38. Guo, R.; Lu, S.; Merkel, A.R.; Sterling, J.A.; Guelcher, S.A. Substrate modulus
regulates osteogenic differentiation of rat mesenchymal stem cells through integrin β1 and BMP receptor type IA. J. Mater. Chem. B 2016, 4, 3584–3593, doi:10.1039/C5TB02747K.
39. Burridge, K.; Turner, C.E.; Romer, L.H. Tyrosine phosphorylation of paxillin and pp125FAK accompanies cell adhesion to extracellular matrix: a role in cytoskeletal assembly. J. Cell Biol. 1992, 119, 893–903, doi:10.1083/jcb.119.4.893.
40. Kong, H.J.; Polte, T.R.; Alsberg, E.; Mooney, D.J. FRET measurements of cell-traction forces and nano-scale clustering of adhesion ligands varied by substrate stiffness. Proc. Natl. Acad. Sci. U. S. A. 2005, 102, 4300–4305, doi:10.1073/pnas.0405873102.
41. De Fusco, C.; Messina, A.; Monda, V.; Viggiano, E.; Moscatelli, F.; Valenzano, A.; Esposito, T.; Sergio, C.; Cibelli, G.; Monda, M.; et al. Osteopontin: relation between adipose tissue and bone homeostasis. Stem Cells Int. 2017, 2017, 1–6, doi:10.1155/2017/4045238.
42. Denhardt, D.T.; Guo, X. Osteopontin: a protein with diverse functions. FASEB J. 1993, 7, 1475–1482, doi:10.1096/fasebj.7.15.8262332.
43. Young, S.R.L.; Gerard-O’Riley, R.; Kim, J.-B.; Pavalko, F.M. Focal adhesion kinase is important for fluid shear stress–induced mechanotransduction in osteoblasts. J. Bone Miner. Res. 2009, 24, 411–424, doi:10.1359/jbmr.081102.
44. Afanasenkau, D.; Offenhäusser, A. Positively Ccharged supported lipid bilayers as a biomimetic platform for neuronal cell culture. Langmuir 2012, 28, 13387–13394, doi:10.1021/la302500r.
45. Morigaki, K.; Mizutani, K.; Saito, M.; Okazaki, T.; Nakajima, Y.; Tatsu, Y.; Imaishi, H. Surface functionalization of a polymeric lipid bilayer for coupling a model biological membrane with molecules, cells, and microstructures. Langmuir 2013, 29, 2722–2730, doi:10.1021/la304747e.
46. Deng, Y.; Wang, Y.; Holtz, B.; Li, J.; Traaseth, N.; Veglia, G.; Stottrup, B.J.; Elde, R.; Pei, D.; Guo, A.; et al. Fluidic and air-stable supported lipid bilayer and cell-mimicking microarrays. J. Am. Chem. Soc. 2008, 130, 6267–6271, doi:10.1021/ja800049f.
47. Reyes, C.D.; García, A.J. Engineering integrin-specific surfaces with a triple-helical collagen-mimetic peptide. J. Biomed. Mater. Res. Part A 2003, 65A, 511–523, doi:10.1002/jbm.a.10550.
48. Benoit, D.S.W.; Anseth, K.S. The effect on osteoblast function of colocalized RGD and PHSRN epitopes on PEG surfaces. Biomaterials 2005, 26, 5209–5220, doi:10.1016/j.biomaterials.2005.01.045.
49. Chen, X.; Chen, Z. SFG studies on interactions between antimicrobial peptides and supported lipid bilayers. Biochim. Biophys. Acta - Biomembr. 2006, 1758, 1257–1273, doi:10.1016/j.bbamem.2006.01.017.
Chapter 6
159
6