Page 111 - Physico-Chemical Niche Conditions for Bone Cells
P. 111
REFERENCES
1. Klein-Nulend, J.; van der Plas, A.; Semeins, C.M.; Ajubi, N.E.; Frangos, J.A.; Nijweide, P.J.; Burger, E.H. Sensitivity of osteocytes to biomechanical stress in vitro. FASEB J. 1995, 9, 441–5, doi:10.1096/fasebj.9.5.7896017.
2. Santos, A.; Bakker, A.D.; Zandieh-Doulabi, B.; Semeins, C.M.; Klein-Nulend, J. Pulsating fluid flow modulates gene expression of proteins involved in Wnt signaling pathways in osteocytes. J. Orthop. Res. 2009, 27, 1280–1287, doi:10.1002/jor.20888.
3. Santos, A.; Bakker, A.D.; Zandieh-Doulabi, B.; de Blieck-Hogervorst, J.M.A.; Klein- Nulend, J. Early activation of the β-catenin pathway in osteocytes is mediated by nitric oxide, phosphatidyl inositol-3 kinase/Akt, and focal adhesion kinase. Biochem. Biophys. Res. Commun. 2010, 391, 364–369, doi:10.1016/j.bbrc.2009.11.064.
4. Marie, P.J. Fibroblast growth factor signaling controlling osteoblast differentiation. Gene 2003, 316, 23–32, doi:10.1016/S0378-1119(03)00748-0.
5. Spatz, J.M.; Wein, M.N.; Gooi, J.H.; Qu, Y.; Garr, J.L.; Liu, S.; Barry, K.J.; Uda, Y.; Lai, F.; Dedic, C.; et al. The Wnt inhibitor sclerostin is up-regulated by mechanical unloading in osteocytes in vitro. J. Biol. Chem. 2015, 290, 16744–16758, doi:10.1074/jbc.M114.628313.
6. Tatsumi, S.; Ishii, K.; Amizuka, N.; Li, M.; Kobayashi, T.; Kohno, K.; Ito, M.; Takeshita, S.; Ikeda, K. Targeted ablation of osteocytes induces osteoporosis with defective mechanotransduction. Cell Metab. 2007, 5, 464–475, doi:10.1016/j.cmet.2007.05.001.
7. Kwon, R.Y.; Meays, D.R.; Meilan, A.S.; Jones, J.; Miramontes, R.; Kardos, N.; Yeh, J.- C.; Frangos, J.A. Skeletal adaptation to intramedullary pressure-induced interstitial fluid flow is enhanced in mice subjected to targeted osteocyte ablation. PLoS One 2012, 7, e33336, doi:10.1371/journal.pone.0033336.
8. Taylor, A.F.; Saunders, M.M.; Shingle, D.L.; Cimbala, J.M.; Zhou, Z.; Donahue, H.J. Mechanically stimulated osteocytes regulate osteoblastic activity via gap junctions. Am. J. Physiol. Physiol. 2007, 292, C545–C552, doi:10.1152/ajpcell.00611.2005.
9. Papanicolaou, S.E.; Phipps, R.J.; Fyhrie, D.P.; Genetos, D.C. Modulation of sclerostin expression by mechanical loading and bone morphogenetic proteins in osteogenic cells. Biorheology 2009, 46, 389–399, doi:10.3233/BIR-2009-0550.
10. Swift, J.; Ivanovska, I.L.; Buxboim, A.; Harada, T.; Dingal, P.C.D.P.; Pinter, J.; Pajerowski, J.D.; Spinler, K.R.; Shin, J.-W.; Tewari, M.; et al. Nuclear Lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science (80-. ). 2013, 341, 1240104, doi:10.1126/science.1240104.
11. Engler, A.J.; Sen, S.; Sweeney, H.L.; Discher, D.E. Matrix elasticity directs stem cell lineage specification. Cell 2006, 126, 677–689, doi:10.1016/j.cell.2006.06.044.
12. McAndrews, K.M.; McGrail, D.J.; Quach, N.D.; Dawson, M.R. Spatially coordinated changes in intracellular rheology and extracellular force exertion during mesenchymal stem cell differentiation. Phys. Biol. 2014, 11, 056004, doi:10.1088/1478- 3975/11/5/056004.
13. Pavalko, F.M.; Chen, N.X.; Turner, C.H.; Burr, D.B.; Atkinson, S.; Hsieh, Y.-F.; Qiu, J.; Duncan, R.L. Fluid shear-induced mechanical signaling in MC3T3-E1 osteoblasts requires cytoskeleton-integrin interactions. Am. J. Physiol. Physiol. 1998, 275, C1591– C1601, doi:10.1152/ajpcell.1998.275.6.C1591.
14. Saatchi, A.; Seddiqi, H.; Amoabediny, G.; Helder, M..; Zandieh-Doulabi, B.; Klein- Nulend, J. Computational fluid dynamics in 3D-printed scaffolds with different strand- orientation in perfusion bioreactors. Iran. J. Chem. Chem. Eng. 2019, 38, 185–200, doi:10.30492/IJCCE.2019.35867.
15. Muha, B.; Čanić, S. Existence of a weak solution to a fluid–elastic structure interaction problem with the Navier slip boundary condition. J. Differ. Equ. 2016, 260, 8550–8589, doi:10.1016/j.jde.2016.02.029.
16. Chung, C.A.; Chen, C.W.; Chen, C.P.; Tseng, C.S. Enhancement of cell growth in tissue-engineering constructs under direct perfusion: Modeling and simulation.
Chapter 4
109
4