Page 38 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 38

References
1. Curry HL, Parkes SE, Powell JE, Mann JR. Caring for survivors of childhood cancers: The size of the problem. Eur. J. Cancer 2006; 42(4):501–508.
2. Geenen MM, Cardous-Ubbink MC, Kremer LCM et al. Medical Assessment of Adverse Health Outcomes in Long-term Survivors of Childhood Cancer. JAMA 2007; 297(24):2705.
3. van Dijk IWEM, Oldenburger F, Cardous-Ubbink MC et al. Evaluation of Late Adverse Events in Long-Term Wilms’ Tumor Survivors. Int. J. Radiat. Oncol. 2010; 78(2):370–378.
4. Lutkenhaus LJ, Kamphuis M, van Wieringen N et al. Reduction in cardiac volume during chemoradiotherapy for patients with esophageal cancer. Radiother. Oncol. 2013; 109(2):200– 203.
5. Prescribing, Recording and Reporting Photon Beam Therapy (Supplement to ICRU Report 50), ICRU Report 62 . ICRU
6. van Herk M. Errors and margins in radiotherapy. Semin. Radiat. Oncol. 2004; 14(1):52–64.
7. McKenzie A, van Herk M, Mijnheer B. Margins for geometric uncertainty around organs at risk
in radiotherapy. Radiother. Oncol. 2002; 62(3):299–307.
8. Wysocka B, Kassam Z, Lockwood G et al. Interfraction and Respiratory Organ Motion During
Conformal Radiotherapy in Gastric Cancer. Int. J. Radiat. Oncol. 2010; 77(1):53–59.
9. Pham D, Kron T, Foroudi F et al. A Review of Kidney Motion under Free, Deep and Forced- Shallow Breathing Conditions: Implications for Stereotactic Ablative Body Radiotherapy
Treatment. Technol. Cancer Res. Treat. 2014; 13(4):315–323.
10. van der Horst A, Wognum S, Dávila Fajardo R et al. Interfractional Position Variation of
Pancreatic Tumors Quantified Using Intratumoral Fiducial Markers and Daily Cone Beam
Computed Tomography. Int. J. Radiat. Oncol. 2013; 87(1):202–208.
11. Beltran C, Krasin MJ, Merchant TE. Inter- and intrafractional positional uncertainties in pediatric
radiotherapy patients with brain and head and neck tumors. Int. J. Radiat. Oncol. Biol. Phys.
2011; 79(4):1266–1274.
12. Beltran C, Trussell J, Merchant TE. Dosimetric Impact of Intrafractional Patient Motion in
Pediatric Brain Tumor Patients. Med. Dosim. 2010; 35(1):43–48.
13. Beltran C, Naik M, Merchant TE. Dosimetric effect of setup motion and target volume margin
reduction in pediatric ependymoma. Radiother. Oncol. 2010; 96(2):216–222.
14. Beltran C, Naik M, Merchant TE. Dosimetric effect of target expansion and setup uncertainty during radiation therapy in pediatric craniopharyngioma. Radiother. Oncol. 2010; 97(3):399–
403.
15. Zhu Y, Stovall J, Butler L et al. Comparison of two immobilization techniques using portal film
and digitally reconstructed radiographs for pediatric patients with brain tumors. Int. J. Radiat.
Oncol. 2000; 48(4):1233–1240.
16. Nazmy MS, Khafaga Y, Mousa A, Khalil E. Cone beam CT for organs motion evaluation in
pediatric abdominal neuroblastoma. Radiother. Oncol. 2012; 102(3):388–392.
17. Pai Panandiker AS, Sharma S, Naik MH et al. Novel assessment of renal motion in children as measured via four-dimensional computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 2012;
82(5):1771–1776.
18. Dawson LA, Kavanagh BD, Paulino AC et al. Radiation-Associated Kidney Injury. Int. J. Radiat.
Oncol. 2010; 76(3):S108–S115.
19. Balter JM, Ten Haken RK, Lawrence TS et al. Uncertainties in CT-based radiation therapy
treatment planning associated with patient breathing. Int. J. Radiat. Oncol. 1996; 36(1):167–
174.
20. Lens E, Van Der Horst A, Kroon PS et al. Differences in respiratory-induced pancreatic tumor
motion between 4D treatment planning CT and daily cone beam CT, measured using intratumoral fiducials. Acta Oncol. (Madr). 2014; 53(9):1257–1264.
35



























































   36   37   38   39   40