Page 22 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 22

imaging dose illustrated with craniospinal axis. Radiother. Oncol. 2014; 111:S109–S110.
48. Demoor-Goldschmidt C, Chiavassa S, Josset S et al. Asservissement respiratoire lors d’une radiothérapie pulmonaire bilatérale pour le sarcome d’Ewing ou le néphroblastome chez des enfants et jeunes adultes : études dosimétrique et clinique de faisabilité. Cancer/Radiotherapie
2017; 21(2):124–129.
49. Claude L, Malet C, Pommier P et al. Active Breathing Control for Hodgkin’s Disease in Childhood
and Adolescence: Feasibility, Advantages, and Limits. Int. J. Radiat. Oncol. Biol. Phys. 2007;
67(5):1470–1475.
50. Tyc VL, Klosky JL, Kronenberg M et al. Children’s Distress in Anticipation of Radiation Therapy
Procedures. Child. Heal. Care 2002; 31(1):11–27.
51. Bucholtz JD. Comforting children during radiotherapy. Oncol. Nurs. Forum 1994; 21(6):987–94.
52. Slovis TL. Children, computed tomography radiation dose, and the As Low As Reasonably
Achievable (ALARA) concept. Pediatrics 2003; 112(4):971–972.
53. Brody AS, Frush DP, Huda W, Brent RL. Radiation Risk to Children From Computed Tomography.
Pediatrics 2007; 120(3):677–682.
54. Wolthaus JWH, Sonke JJ, van Herk M et al. Comparison of Different Strategies to Use Four-
Dimensional Computed Tomography in Treatment Planning for Lung Cancer Patients. Int. J.
Radiat. Oncol. Biol. Phys. 2008; 70(4):1229–1238.
55. Wolthaus JWH, Schneider C, Sonke JJ et al. Mid-ventilation CT scan construction from four-
dimensional respiration-correlated CT scans for radiotherapy planning of lung cancer patients.
Int. J. Radiat. Oncol. Biol. Phys. 2006; 65(5):1560–1571.
56. Stroom JC, De Boer HCJ, Huizenga H, Visser AG. Inclusion of geometrical uncertainties in
radiotherapy treatment planning by means of coverage probability. Int. J. Radiat. Oncol. Biol.
Phys. 1999; 43(4):905–919.
57. Bel A, van Herk M, Lebesque J V. Target margins for random geometrical treatment
uncertainties in conformal radiotherapy. Med. Phys. 1996; 23(9):1537–1545.
58. Van Herk M, Remeijer P, Rasch C, Lebesque J V. The probability of correct target dosage: Dose- population histograms for deriving treatment margins in radiotherapy. Int. J. Radiat. Oncol. Biol.
Phys. 2000; 47(4):1121–1135.
59. van Herk M. Errors and margins in radiotherapy. Semin. Radiat. Oncol. 2004; 14(1):52–64.
60. van Herk M, Witte M, van der Geer J et al. Biologic and physical fractionation effects of random
geometric errors. Int. J. Radiat. Oncol. 2003; 57(5):1460–1471.
61. Langen KM, Jones DTL. Organ motion and its management. Int. J. Radiat. Oncol. Biol. Phys. 2001;
50(1):265–278.
62. Kortmann R-D, Freeman C, Marcus K et al. Paediatric radiation oncology in the care of childhood
cancer: A position paper by the International Paediatric Radiation Oncology Society (PROS).
Radiother. Oncol. 2016; 119(2):357–360.
63. Dawson LA, Jaffray DA. Advances in Image-Guided Radiation Therapy. J. Clin. Oncol. 2007;
25(8):938–946.
64. van Herk M. Different Styles of Image-Guided Radiotherapy. Semin. Radiat. Oncol. 2007;
17(4):258–267.
65. Engelsman M, Schwarz M, Dong L. Physics Controversies in Proton Therapy. Semin. Radiat.
Oncol. 2013; 23(2):88–96.
66. Timmermann B. Proton Beam Therapy for Childhood Malignancies: Status Report. Klin.
Pädiatrie 2010; 222(03):127–133.
19
























































   20   21   22   23   24