Page 152 - Organ motion in children for high-precision radiotherapy - Sophie Huijskens
P. 152
References
1. Guerreiro F, Seravalli E, Janssens GO et al. Intra- and inter-fraction uncertainties during IGRT for Wilms’ tumor. Acta Oncol. (Madr). 2018; 57(7):941–949.
2. Beltran C, Pai Panandiker AS, Krasin MJ, Merchant TE. Daily image-guided localization for neuroblastoma. J. Appl. Clin. Med. Phys. 2010; 11(4):162–169.
3. Nazmy MS, Khafaga Y, Mousa A, Khalil E. Cone beam CT for organs motion evaluation in pediatric abdominal neuroblastoma. Radiother. Oncol. 2012; 102(3):388–392.
4. Yan D, Vicini F, Wong J, Martinez A. Adaptive radiation therapy. Phys. Med. Biol. 1997; 42(1):123–132.
5. van der Horst A, Houweling AC, van Tienhoven G et al. Dosimetric effects of anatomical changes during fractionated photon radiation therapy in pancreatic cancer patients. J. Appl. Clin. Med. Phys. 2017; 18(6):142–151.
6. Nederveen AJ, Dehnad H, van der Heide UA et al. Comparison of megavoltage position verification for prostate irradiation based on bony anatomy and implanted fiducials. Radiother. Oncol. 2003; 68(1):81–88.
7. Pai Panandiker AS, Beltran C, Billups CA et al. Intensity modulated radiation therapy provides excellent local control in high-risk abdominal neuroblastoma. Pediatr. Blood Cancer 2013; 60(5):761–765.
8. Kannan S, Teo BKK, Solberg T, Hill-Kayser C. Organ motion in pediatric high-risk neuroblastoma patients using four-dimensional computed tomography. J. Appl. Clin. Med. Phys. 2017; 18(1):107–114.
9. Pai Panandiker AS, Sharma S, Naik MH et al. Novel assessment of renal motion in children as measured via four-dimensional computed tomography. Int. J. Radiat. Oncol. Biol. Phys. 2012; 82(5):1771–1776.
10. Uh J, Krasin MJ, Li Y et al. Quantification of Pediatric Abdominal Organ Motion With a 4- Dimensional Magnetic Resonance Imaging Method. Int. J. Radiat. Oncol. Biol. Phys. 2017; 99(1):227–237.
11. Wolthaus JWH, Sonke JJ, van Herk M et al. Comparison of Different Strategies to Use Four- Dimensional Computed Tomography in Treatment Planning for Lung Cancer Patients. Int. J. Radiat. Oncol. Biol. Phys. 2008; 70(4):1229–1238.
12. Vinod SK, Jameson MG, Min M, Holloway LC. Uncertainties in volume delineation in radiation oncology: A systematic review and recommendations for future studies. Radiother. Oncol. 2016; 121(2):169–179.
13. X. Muracciole, J. Cuilliere, S. Hoffstetter, C. Alapetite, P. Quetin, M. Baro, Z. Gaci, J. Maire SC, Carrie C. Quality assurance of a french multicentric conformal radiatherapy protocol for low- stage medulloblastoma : Variability in Target Volume Delineation. Int. J. Radiat. Oncol. Biol. Phys. 2002; 54(2):S148-149.
14. Coles CE, Hoole ACF, Harden S V. et al. Quantitative assessment of inter-clinician variability of target volume delineation for medulloblastoma: quality assurance for the SIOP PNET 4 trial protocol. Radiother. Oncol. 2003; 69(2):189–194.
15. Padovani L, Huchet A, Claude L et al. Inter-clinician variability in making dosimetric decisions in pediatric treatment: A balance between efficacy and late effects. Radiother. Oncol. 2009; 93(2):372–376.
16. Lütgendorf-Caucig C, Fotina I, Gallop-Evans E et al. Multicenterevaluierung unterschiedlicher Zielvolumenkonzepte für pädiatrische Hodgkin-Erkrankungen: Eine Fallstudie. Strahlentherapie und Onkol. 2012; 188(11):1025–1030.
17. Kristensen I, Agrup M, Bergström P et al. Assessment of volume segmentation in radiotherapy of adolescents; A treatment planning study by the Swedish Workgroup for Paediatric Radiotherapy. Acta Oncol. (Madr). 2014; 53(1):126–133.
149